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Abstract Automating the design of heuristic search methods is an active research

field within computer science, artificial intelligence and operational research. In order

to make these methods more generally applicable, it is important to eliminate or reduce

the role of the human expert in the process of designing an effective methodology to

solve a given computational search problem. Researchers developing such methodolo-

gies are often constrained on the number of problem domains on which to test their

adaptive, self-configuring algorithms; which can be explained by the inherent difficulty

of implementing their corresponding domain specific software components.

This paper presents HyFlex, a software framework for the development of cross-

domain search methodologies. The framework features a common software interface

for dealing with different combinatorial optimisation problems, and provides the al-

gorithm components that are problem specific. In this way, the algorithm designer

does not require a detailed knowledge the problem domains, and thus can concen-

trate his/her efforts in designing adaptive general-purpose heuristic search algorithms.

Four hard combinatorial problems are fully implemented (maximum satisfiability, one

dimensional bin packing, permutation flow shop and personnel scheduling), each con-

taining a varied set of instance data (including real-world industrial applications) and

an extensive set of problem specific heuristics and search operators. The framework

forms the basis for the first International Cross-domain Heuristic Search Challenge

(CHeSC), and it is currently in use by the international research community. In sum-

mary, HyFlex represents a valuable new benchmark of heuristic search generality, with

which adaptive cross-domain algorithms are being easily developed, and reliably com-

pared.
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1 Introduction

There is a renewed and growing research interest in techniques for automating the

design of heuristic search methods. The goal is to remove or reduce the need for a human

expert in the process of designing an effective algorithm to solve a search problem, and

consequently raise the level of generality at which search methodologies can operate.

Evolutionary algorithms and metaheuristics have been successfully applied to solve

a variety of real-world complex optimisation problems. Their design, however, has

become increasingly complex. In order to make these methodologies widely applicable,

it is important to provide self-managed systems that can configure themselves ‘on the

fly’; adapting to the changing problem (or search space) conditions, based on general

high-level guidelines provided by their users.

Researchers pursuing these goals within combinatorial optimisation, are often lim-

ited by the number of problems domains available to them for testing their adaptive

methodologies. This can be explained by the difficulty and effort required to implement

state-of-the-art software components, such as the problem model, solution representa-

tion, objective function evaluation and search operators; for many different combina-

torial optimisation problems. Although several benchmark problems in combinatorial

optimisation are available (Taillard, 1993; Argelich et al, 2009; ESICUP, 2011; Beasley,

2010; TSPLIB, 2008) (to name just a few); they contain mainly the data of a set of in-

stances and their best known solutions. They generally do not incorporate the software

necessary to encode the solutions and calculate the objective function, let alone exist-

ing search operators for the given problem. It is the researcher who needs to provide

these in order to later test their high-level adaptive search method. To overcome such

limitations, we propose HyFlex, a modular and flexible Java class library for designing

and testing iterative heuristic search algorithms. It provides a number of problem do-

main modules, each of which encapsulates the problem-specific algorithm components:

solution representation, fitness evaluation, instance data, and a repository of associated

problem-specific heuristics. Importantly, only the high-level control strategy needs to

be implemented by the user, as HyFlex provides an easy to use interface with which the

problem domains can be accessed. Indeed, HyFlex can be considered as an extension

of the notion of a benchmark for combinatorial optimisation. Instead of providing only

a data-set for a given problem domain, HyFlex also provides the problem specific soft-

ware surrounding it. Thus, HyFlex acts as a benchmark for cross-domain optimisation

and more general search methodologies.

A number of techniques and research themes within operational research, computer

science and artificial intelligence would benefit from the proposed framework. Among

them: hyper-heuristics (Burke et al, 2003b,a, 2010c; Ross, 2005), adaptive memetic

algorithms (Krasnogor and Smith, 2001; Jakob, 2006; Ong et al, 2006; Smith, 2007;

Neri et al, 2007), adaptive operator selection (Fialho et al, 2008, 2010; Maturana and

Saubion, 2008; Maturana et al, 2010), reactive search (Battiti, 1996; Battiti et al, 2009),

variable neighborhood search (Mladenovic and Hansen, 1997) and its adaptive variants

(Braysy, 2002; Pisinger and Ropke, 2007); and generally the development of adaptive

parameter control strategies in evolutionary algorithms (Eiben et al, 2007; Lobo et al,

2007). HyFlex can be seen, then, as a unifying benchmark, with which the performance

of different adaptive techniques can be reliably assessed and compared. Indeed, HyFlex

is currently used to support an international research competition: the First Cross-

Domain Heuristic Search Challenge (CHeSC, 2011). The challenge is analogous to the

athletics Decathlon event, where the goal is not to excel in one event at the expense
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of others, but to have a good general performance on each. The competition will also

provide a set of state-of-the-art initial results on the HyFlex benchmark. Competitors

will submit one Java class file representing their hyper-heuristic or high-level search

strategy. This class file will then be run in HyFlex through the common interface. This

ensures that the competition is fair, because all of the competitors must use the same

problem representation and search operators. Moreover, due to the common interface,

the competition will consider not only hidden instances, but also hidden domains. An

interesting feature of CHeSC is the Leaderboard, a table which ranks participants

according to their best score on a rehearsal competition conducted every week. This

rehearsal competition is based on a set of results submitted by the participants who

chose to do so. It has brought substantial dynamism and interest to the challenge.

CHeSC currently has 43 registered teams from 23 different countries.

This article is structured as follows. Section 2 describes the antecedents and ar-

chitecture of the HyFlex framework. It also includes examples of how to implement

and run hyper-heuristics within the framework. Section 3 presents the four problem

domains which are currently implemented: maximum satisfiability (MAX-SAT), one-

dimensional bin packing, permutation flow shop, and personnel scheduling. For each

domain, details are given on the instance data, solution initialisation method, objective

function evaluation, and the set of problem specific heuristics. Section 4 illustrates the

implementation of three high-level search strategies using HyFlex: an iterative hyper-

heuristic, a multiple neighbourhood iterated local search algorithm, and a multi-meme

memetic algorithm. They are not intended to be state-of-the-art adaptive approaches

in their categories. Instead, they were selected to illustrate the wide range of algorithm

designs that can be implemented within HyFlex. Section 5 presents a comparative

study of the three algorithms. The goal is not to determine the best performing algo-

rithm, but instead to illustrate their difference in behavior across the different problem

domains. Finally, section 6 summarises our contribution and suggests directions for

future research.

2 The HyFlex Framework

2.1 Overview of HyFlex

HyFlex (Hyper-heuristics Flexible framework) is a software framework designed to

enable the development, testing and comparison of iterative general-purpose heuristic

search algorithms (such as hyper-heuristics). To achieve these goals it uses modularity

and the concept of decomposing a heuristic search algorithm into two main parts (see

Figure 1):

1. A general-purpose part: the algorithm or hyper-heuristic.

2. The problem-specific part: provided by the HyFlex framework.

In the hyper-heuristics literature, this idea is also referred to as the domain barrier

between the problem-specific heuristics and the hyper-heuristic (Burke et al, 2003a;

Cowling et al, 2000). HyFlex extends the conceptual domain-barrier framework by

maintaining a population (instead of a single incumbent solution) in the problem do-

main layer. Moreover, a richer variety of problem specific heuristics and search opera-

tors is provided. Another relevant antecedent to HyFlex is PISA (Bleuler et al, 2003),
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Fig. 1 Modularity of heuristic search algorithms. Separation between the problem-specific
and the general-purpose parts, both of which are reusable and interchangeable through the
HyFlex interface.

a text-based software interface for multi-objective evolutionary algorithms. PISA pro-

vides a division between the application-specific and the algorithm-specific parts of a

multi-objective evolutionary algorithm. In HyFlex, the interface is not text-based. In-

stead, it is given by an abstract Java class. This allows a more tight coupling between

the modules and overcomes some of the speed limitations encountered in PISA. While

PISA is designed to implement evolutionary algorithms, HyFlex can be used to im-

plement both population-based and single point metaheuristics and hyper-heuristics.

Moreover, it provides a rich variety of fully implemented combinatorial optimisation

problems including real-world instance data.

The framework is written in java which is familiar to and commonly used by many

researchers. It also benefits from object orientation, platform independence and auto-

matic memory management. At the highest level the framework consists of just two

abstract classes: ProblemDomain and HyperHeuristic. The structure of these classes is

shown in the class diagram of figure 2. In the diagram, the signatures adjacent to circles

are public methods and fields, and the signatures adjacent to diamonds are protected.

Abstract methods are denoted by italics, and the implementations of these methods

are necessarily different for each problem domain class.

2.1.1 The ProblemDomain Class

As shown in figure 2, an implementation of the ProblemDomain class provides the

following elements, each of which is easily accessed and managed with one or more

methods.

1. A user-configurable memory (a population) of solutions, which can be managed by

the hyper-heuristic through methods such as setMemorySize and copySolution.

2. A routine to randomly initialise solutions, initialiseSolution(i), where i is the

index of the solution index in the memory.

2.1.2 Description

Problem formulation: ‘SAT’ refers to the boolean satisfiability problem. This

problem involves determining if there is an assignment of the boolean variables
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Table 1 MAX-SAT instances

name source variables clauses

1 contest02-Mat26.sat05-457.reshuffled-07 CRIL (2007) 744 2464

2 hidden-k3-s0-r5-n700-01-S2069048075.sat05-488.reshuffled-07 CRIL (2007) 700 3500

3 hidden-k3-s0-r5-n700-02-S350203913.sat05-486.reshuffled-07 CRIL (2007) 700 3500

4 parity-games/instance-n3-i3-pp CRIL (2009) 525 2276

5 parity-games/instance-n3-i3-pp-ci-ce CRIL (2009) 525 2336

6 parity-games/instance-n3-i4-pp-ci-ce CRIL (2009) 696 3122

7 highgirth/3SAT/HG-3SAT-V250-C1000-1 Argelich et al (2009) 250 1000

8 highgirth/3SAT/HG-3SAT-V250-C1000-2 Argelich et al (2009) 250 1000

9 highgirth/3SAT/HG-3SAT-V300-C1200-2 Argelich et al (2009) 300 1200

10 MAXCUT/SPINGLASS/t7pm3-9999 Argelich et al (2009) 343 2058

of a formula, which results in the whole formula evaluating to true. If there is

such an assignment then the formula is said to be satisfiable, and if not then it is

unsatisfiable. An example formula is given in equation 2, which is satisfied when

x1 = false x2 = false x3 = true and x4 = false.

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4) (1)

HyFlex implements one of SAT’s related optimisation problems, the maximum sat-

isfiability problem (MAX-SAT), in which the objective is to find the maximum

number of clauses of a given Boolean formula that can be satisfied by some assign-

ment. The problem can also be formulated as a minimisation problem, where the

objective is to minimise the number of unsatisfied clauses.

Solution initialisation: The solutions are initialised by randomly assigning a true

or false value to each variable.

Objective function: The fitness function returns the number of ‘broken’ clauses,

which are those which evaluate to false.

Instance data: The ten training instances and their sources are summarised in

Table 2.

2.1.3 Search Operators

This domain contains a total of 9 search operators, summarised by Fukunaga

(2008). Before describing them, find below four relevant definitions. Let T be the

state of the formula before the variable is flipped, and let T ′ be the state of the

formula after the variable is flipped.

Net gain of a variable is defined as the number of broken clauses in T minus the

number of broken clauses in T ′.
Positive gain of a variable is the number of broken clauses in T that are satisfied

in T ′.
Negative gain of a variable is the number of satisfied clauses in T that are broken

in T ′.
Age of a variable is the number of variable flips since it was last flipped.

Mutational heuristics

h1: GSAT: Flip the variable with the highest net gain, and break ties randomly

(Selman et al, 1992).
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h2: HSAT: Identical functionality to GSAT, but ties are broken by selecting

the variable with the highest age (Gent and Walsh, 1993).

h3: WalkSAT: Select a random broken clause BC. If any variables in BC have a

negative gain of zero, randomly select one of these to flip. If no such variable

exists, flip a random variable in BC with probability 0.5, otherwise flip the

variable with minimal negative gain (Selman et al, 1994).

h4: Novelty: Select a random broken clause BC. Flip the variable v with the

highest net gain, unless v has the minimal age in BC. If this is the case,

then flip it with 0.3 probability. Otherwise flip the variable with the second

highest net gain (McAllester et al, 1997).

Ruin-recreate heuristics

h5: A proportion of the variables is randomly reinitialised.

Local search heuristics

h6: This is a first-improvement local search. In each iteration, flip a variable

selected completely at random.

h7: This is a first-improvement local search. In each iteration, flip a randomly

selected variable from a randomly selected broken clause.

Crossover heuristics

h8: Standard one point crossover on the boolean strings of variables.

h9: Standard two point crossover on the boolean strings of variables.

3. A set of problem specific heuristics, which are used to modify solutions. These

are called by the user’s hyper-heuristic with the applyHeuristic(i, j, k) method,

where i is the index of the heuristic to call, j is the index of the solution in memory

to modify, and k is the index in memory where the resulting solution should be

put. Each problem-specific heuristic in each problem domain is classified into one

of four groups, shown below. The heuristics belonging to a specific group can be

accessed by calling getHeuristicsOfType(type).

– Mutational or perturbation heuristics: perform a small change on the solution,

by swapping, changing, removing, adding or deleting solution components.

– Ruin-recreate (destruction-construction) heuristics: partly destroy the solution

and rebuild or recreate it afterwards. These heuristics can be considered as large

neighbourhood structures. They are, however, different from the mutational

heuristics in that they can incorporate problem specific construction heuristics

to rebuild the solutions

– Hill-climbing or local search heuristics: iteratively make small changes to the

solution, only accepting non-deteriorating solutions, until a local optimum is

found or a stopping condition is met. These heuristics differ from mutational

heuristics in that they incorporate an iterative improvement process, and they

guarantee that a non-deteriorating solution will be produced.

– Crossover heuristics: take two solutions, combine them, and return a new solu-

tion.

4. A varied set of instances that can be easily loaded using the method loadInstance(a),

where a is the index of the instance to be loaded.

5. A fitness function, which can be called with the getFunctionValue(i) method,

where i is the index of the required solution in the memory. HyFlex problem do-

mains are always implemented as minimisation problems, so a lower fitness is always

superior. The fitness of the best solution found so far in the run can be obtained

with the getBestSolutionValue() method.
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Fig. 2 Class diagram for the HyFlex framework.

6. Two parameters: α and β, (0 <= [α, β] <= 1), which are the ‘intensity’ of muta-

tion and ‘depth of search’, respectively, that control the behaviour of some search

operators.

2.1.4 The HyperHeuristic Class

The HyperHeuristic class is designed to allow algorithms which implement this class to

be compared and benchmarked across one or more of the problem domains available

(for example, in a competition). Users create cross-domain heuristic algorithms by

creating implementations of this abstract class. Each class must contain a toString()

method, to give the methodology a name. It must also contain a solve() method, in

which the functionality of the particular methodology is written.

The solve() method would normally contain a loop, which continues while the

time limit (defined by the user) has not been exceeded. In the loop, the code should

provide a mechanism for selecting between the available problem-specific heuristics, and

choose to which solutions in memory to apply the heuristics. This class could choose

to work with a memory size of 1 for a single point search, or a large memory could be

maintained for a population based approach. The memory can be easily defined and
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maintained through calling methods of the ProblemDomain class, where the memory is

stored. A hyper-heuristic class automatically records the length of time for which it has

been running, and this can be monitored through methods such as hasTimeExpired()

and getElapsedTime().

The solve method is the only method which must be implemented, all other common

functionality is provided by the HyFlex software, such as the timing function and the

recording of the best solution.

2.2 Running a Hyper-Heuristic

Algorithm 1 shows the ease with which a hyper-heuristic can be run on a problem

domain. An object is created for the problem domain (in this example MAX-SAT), and

for the hyper-heuristic, each with a random seed. Then a problem instance is loaded

from the selection available in the problem domain object. In this example we choose

the instance with index 0. The problem domain is now set up for the hyper-heuristic.

We set the time for which the hyper-heuristic will run, in milliseconds. Then the

hyper-heuristic object is given a reference to the problem domain object. Now that

the setup is complete, the run() method of the hyper-heuristic is called, to start the

search process. The hyper-heuristic will run for 60 seconds in this example, and the

best solution found during that time is retrievable with the getBestSolutionValue()

method, as shown in algorithm 1.

Algorithm 1 Java code for running a hyper-heuristic on a problem domain

ProblemDomain problem = new SAT(1234);

HyperHeuristic HHObject = new ExampleHyperHeuristic1(5678);

problem.loadInstance(0);

HHObject.setTimeLimit(60000);

HHObject.loadProblemDomain(problem);

HHObject.run();

System.out.println(HHObject.getBestSolutionValue());

2.3 An Example Hyper-Heuristic

This section provides an example hyper-heuristic, to illustrate the ease with which a

hyper-heuristic can be created. This is done by extending the HyperHeuristic abstract

class, and implementing only one method. All of the common functionality is provided

by the HyFlex software, such as the timing function and the recording of the best

solution. This example demonstrates exactly how to use certain elements of HyFlex

functionality, including the solution memory.

After the run() method of the hyper-heuristic is called (see section 2.2), the hyper-

heuristic abstract class performs some housekeeping tasks, such as initialising the timer,

and then calls the solve method of the chosen hyper-heuristic. In our example this is

an object of the class ExampleHyperHeuristic1. Algorithm 2 shows the code for the

solve() method in ExampleHyperHeuristic1. It shows that very few lines of code are
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necessary in order to implement a hyper-heuristic method with the HyFlex framework.

Algorithm 2 is written in pseudocode, but each line corresponds to no more than one

line of actual Java code. The solve() method is the only substantial method which

needs to be implemented. Indeed the only other necessary method is toString(), which

requires one line to give the hyper-heuristic a name.

From Algorithm 2, we can see that the solve() method takes the problem domain

object as an argument, and first checks for the number of search operators available

within it. We also initialise a value to store the current objective function value. It is also

necessary to initialise at least one solution in the memory. The default memory size is 2,

and we initialise the solution at index 0, which means we build an initial solution with

the method specified in the problem domain (generally a fast randomised constructive

heuristic). The solution at index 1 remains uninitialised, and therefore has a value of

null.

An implemented hyper-heuristic must always contain a while loop which checks if

the time limit has expired. The code within the loop specifies the main functionality

of the hyper-heuristic. In this example, we choose a random operators, and then apply

it to the solution at index 0. The modified solution is put in the memory at index 1

(previously not initialised). Note that a random number generator rng is provided by

the HyperHeuristic abstract class. This is created when the hyper-heuristic object’s

constructor is called, and is the reason why that constructor requires a random seed.

If the new solution is superior to the old solution, it is accepted, and the new

solution overwrites the old one in memory. The copySolution method of the problem

domain class is employed to manage this. If the new solution is not superior, then the

new solution is accepted with 0.5 probability.

Algorithm 2 Pseudocode for the solve method of ExampleHyperHeuristic1. This is

called when the run() method of the hyper-heuristic is called (see algorithm 1)

Require: A ProblemDomain object, problem

int numberOfHeuristics = problem.getNumberOfHeuristics

double currentObjValue = Double.POSITIVE-INFINITY

problem.initialiseSolution(0)

while hasTimeExpired = FALSE do

int h = rng.nextInt(numberOfHeuristics)

double newObjValue = problem.applyHeuristic(h, 0, 1)

double delta = currentObjValue - newObjValue

if delta > 0 then

problem.copySolution(1, 0)

currentObjValue = newObjValue;

else

if rng.nextBoolean = TRUE then

problem.copySolution(1, 0)

currentObjValue = newObjValue;

end if

end if

end while
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2.4 Summary of HyFlex Description

In this section, we have given an overview of the HyFlex framework, and demonstrated

that it is very easy to create and run a hyper-heuristic using the framework. The contri-

bution of HyFlex is that the hyper-heuristic developer now does not need expertise in

any of the problem domains. The developer is therefore free to focus their research ef-

forts into developing hyper-heuristic methodologies which can be shown to be generally

successful across a range of problem domains.

3 HyFlex Problem Domains

Currently, four problem domain modules are implemented(which can be downloaded

from CHeSC (2011)): maximum satisfiability (MAX-SAT), one-dimensional bin pack-

ing, permutation flow shop, and personnel scheduling. Each domain includes 10 training

instances from different sources, and number of problem-specific heuristics of the types

discussed in section 2.1.

3.1 Maximum Satisfiability (MAX-SAT)

3.1.1 Description

Problem formulation: ‘SAT’ refers to the boolean satisfiability problem. This prob-

lem involves determining if there is an assignment of the boolean variables of a formula,

which results in the whole formula evaluating to true. If there is such an assignment

then the formula is said to be satisfiable, and if not then it is unsatisfiable. An example

formula is given in equation 2, which is satisfied when x1 = false x2 = false x3 = true

and x4 = false.

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4) (2)

HyFlex implements one of SAT’s related optimisation problems, the maximum

satisfiability problem (MAX-SAT), in which the objective is to find the maximum

number of clauses of a given Boolean formula that can be satisfied by some assignment.

The problem can also be formulated as a minimisation problem, where the objective

is to minimise the number of unsatisfied clauses.

Solution initialisation: The solutions are initialised by randomly assigning a true or

false value to each variable.

Objective function: The fitness function returns the number of ‘broken’ clauses,

which are those which evaluate to false.

Instance data: The ten training instances and their sources are summarised in Table

2.

3.1.2 Search Operators

This domain contains a total of 9 search operators, summarised by Fukunaga (2008).

Before describing them, find below four relevant definitions. Let T be the state of the

formula before the variable is flipped, and let T ′ be the state of the formula after the

variable is flipped.
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Table 2 MAX-SAT instances

name source variables clauses

1 contest02-Mat26.sat05-457.reshuffled-07 CRIL (2007) 744 2464

2 hidden-k3-s0-r5-n700-01-S2069048075.sat05-488.reshuffled-07 CRIL (2007) 700 3500

3 hidden-k3-s0-r5-n700-02-S350203913.sat05-486.reshuffled-07 CRIL (2007) 700 3500

4 parity-games/instance-n3-i3-pp CRIL (2009) 525 2276

5 parity-games/instance-n3-i3-pp-ci-ce CRIL (2009) 525 2336

6 parity-games/instance-n3-i4-pp-ci-ce CRIL (2009) 696 3122

7 highgirth/3SAT/HG-3SAT-V250-C1000-1 Argelich et al (2009) 250 1000

8 highgirth/3SAT/HG-3SAT-V250-C1000-2 Argelich et al (2009) 250 1000

9 highgirth/3SAT/HG-3SAT-V300-C1200-2 Argelich et al (2009) 300 1200

10 MAXCUT/SPINGLASS/t7pm3-9999 Argelich et al (2009) 343 2058

Net gain of a variable is defined as the number of broken clauses in T minus the

number of broken clauses in T ′.
Positive gain of a variable is the number of broken clauses in T that are satisfied in

T ′.
Negative gain of a variable is the number of satisfied clauses in T that are broken

in T ′.
Age of a variable is the number of variable flips since it was last flipped.

Mutational heuristics

h1: GSAT: Flip the variable with the highest net gain, and break ties randomly

(Selman et al, 1992).

h2: HSAT: Identical functionality to GSAT, but ties are broken by selecting the

variable with the highest age (Gent and Walsh, 1993).

h3: WalkSAT: Select a random broken clause BC. If any variables in BC have a

negative gain of zero, randomly select one of these to flip. If no such variable

exists, flip a random variable in BC with probability 0.5, otherwise flip the

variable with minimal negative gain (Selman et al, 1994).

h4: Novelty: Select a random broken clause BC. Flip the variable v with the highest

net gain, unless v has the minimal age in BC. If this is the case, then flip it

with 0.3 probability. Otherwise flip the variable with the second highest net

gain (McAllester et al, 1997).

Ruin-recreate heuristics

h5: A proportion of the variables is randomly reinitialised.

Local search heuristics

h6: This is a first-improvement local search. In each iteration, flip a variable selected

completely at random.

h7: This is a first-improvement local search. In each iteration, flip a randomly se-

lected variable from a randomly selected broken clause.

Crossover heuristics

h8: Standard one point crossover on the boolean strings of variables.

h9: Standard two point crossover on the boolean strings of variables.
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3.2 One Dimensional Bin Packing

3.2.1 Description

Problem formulation: The classical one dimensional bin packing problem consists

of a set of pieces, which must be packed into as few bins as possible. Each piece j has

a weight wj , and each bin has capacity c. The objective is to minimise the number of

bins used, where each piece is assigned to one bin only, and the weight of the pieces

in each bin does not exceed c. To avoid large plateaus in the search space around

the best solutions, we employ an alternative fitness function to the number of bins. A

mathematical formulation of the bin packing problem is shown in equation 3, taken

from (Martello and Toth, 1990).

Minimise

n∑
i=1

yi

Subject to

n∑
j=1

wjxij ≤ cyi, i ∈ N = {1, . . . , n},

n∑
i=1

xij = 1, j ∈ N,

yi ∈ {0, 1}, i ∈ N,
xij ∈ {0, 1}, i ∈ N, j ∈ N, (3)

Where yi is a binary variable indicating whether bin i contains pieces, xij indicates

whether piece j is packed into bin i, and n is the number of available bins (and also

the number of pieces as we know we can pack n pieces into n bins).

Solution initialisation: Solutions are initialised by first randomising the order of

the pieces, and then applying the ‘first-fit’ heuristic (Johnson et al, 1974). This is a

constructive heuristic, which packs the pieces one at a time, each into the first bin into

which they will fit.

Objective function: A solution is given a fitness calculated from equation 4, where:

n = number of bins, fullnessi = sum of all the pieces in bin i, and C = bin capacity.

The function puts a premium on bins that are filled completely, or nearly so. It returns

a value between zero and one, where lower is better, and a set of completely full bins

would return a value of zero.

Fitness = 1−

(∑n
i=1(fullnessi/C)2

n

)
(4)

Instance data: The ten training instances and their sources are summarised in Table

3.

3.2.2 Search Operators

This domain contains a total of 8 search operators, some of which are taken from (Bai

et al, 2007).

Mutational heuristics
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Table 3 Bin packing instances

name source capacity no. pieces

1 falkenauer/u1000-00 ESICUP (2011) 150 1000

2 falkenauer/u1000-01 ESICUP (2011) 150 1000

3 schoenfieldhard/BPP14 ESICUP (2011) 1000 160

4 schoenfieldhard/BPP832 ESICUP (2011) 1000 160

5 10-30/instance1 Hyde (2011) 150 2000

6 10-30/instance2 Hyde (2011) 150 2000

7 triples1002/instance1 Hyde (2011) 1000 1002

8 triples2004/instance1 Hyde (2011) 1000 2004

9 test/testdual4/binpack0 ESICUP (2011) 100 5000

10 test/testdual7/binpack0 ESICUP (2011) 100 5000

h1: Select two different pieces at random, and swap them if there is space. If one

of the pieces does not fit into the new bin then put it into an empty bin.

h2: This heuristic selects a bin at random from those with more pieces than the

average. It then splits this bin into two bins, each containing half of the pieces

from the original bin.

h3: Remove all of the pieces from the lowest filled bin, and repack them into the

other bins if possible, with the best-fit heuristic.

Ruin-recreate heuristics

h4: Remove all the pieces from the x highest filled bins, where x is an integer

determined by the ‘intensity of mutation’ parameter. Repack the pieces using

the best-fit heuristic.

h5: Remove all the pieces from the x lowest filled bins, where x is an integer de-

termined by the ‘intensity of mutation’ parameter. Repack the pieces using the

best-fit heuristic.

Local search heuristics

These heuristics implement first-improvement local search operators. In each iter-

ation, a neighbour is generated, and it is accepted immediately if it has superior or

equal fitness. If the neighbour is worse, then the change is not accepted.

h6: A first-improvement local search. In each iteration, select two different pieces at

random, and swap them if there is space, and if it will produce an improvement

in fitness.

h7: A first-improvement local search. Take the largest piece from the lowest filled

bin, and exchange with a smaller piece from a randomly selected bin. If there is

no such piece that produces a valid packing after the swap, then exchange the

first piece with two pieces that have a smaller total size. If there are no such

pieces then the heuristic does nothing.

Crossover heuristics

h8: Exon shuffling crossover (Rohlfshagen and Bullinaria, 2007). The bins from

both parents are ordered by wasted space, least first. Then all of the mutually

exclusive bins are added to the offspring. In the second phase, the remaining

bins from the parents are added to the offspring by removing any duplicate

pieces.
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3.3 Permutation Flow Shop

3.3.1 Description

Problem formulation: The permutation flow shop problem consists of finding the

order in which n jobs are to be processed in m consecutive machines. The jobs are

processed in the order machine 1, machine 2, . . . , machine m. Machines can only process

one job at a time and jobs can be processed by only one machine at a time. No job

can jump over any other job, meaning that the order in which jobs are processed in

machine 1 is maintained throughout the system. Moreover, no machine is allowed to

remain idle when a job is ready for processing. All jobs and machines are available at

time 0. Each job i requires a processing time on machine j denoted by pij .

Given a permutation π = π(1), . . . , π(n), where π(q) is the index of the job as-

signed in the q-th place, a unique schedule is obtained by calculating the starting and

completion time of each job on each machine. The starting time startπ(q),j of the q-th

job on machine j is calculated as:

startπ(q),j = max{startπ(q),j−1, startπ(q−1),j},

with

startπ(0),j = 0 and startπ(q),0 = 0,

and its completion time is calculated as:

Cπ(q),j = startπ(q) + pπ(q),j .

Given a schedule, let Ci be the time when job i finishes its processing on machine

m. The objective is to find the processing order of n jobs in such a way that the

resultant schedule minimises the completion time of the last job to exit the shop, i.e.

minimises maxi Ci.

Solution initialisation: Solutions are created with a randomised version of the widely

used NEH algorithm (Nawaz et al, 1983), which works as follows. First a random

permutation of the jobs is generated. Second, a schedule is constructed from scratch

by assigning the first job in the permutation to an empty schedule; the second job is

then assigned to places 1 and 2 and fixed where the partial schedule has the smallest

makespan; the third job is assigned to places 1, 2 and 3 and fixed to the place where

the partial schedule has the smallest makespan, and so on.

Objective function: The fitness function returns maxi Ci. Representing the comple-

tion time of the last job in the schedule.

Instance data: The ten training instances and their sources are summarised in Table

4.

3.3.2 Search Operators

A total of 15 search operators are implemented for this problem domain.

Mutational heuristics

h1: Reinserts a randomly selected job into a randomly selected position in the

permutation, shifting the rest of the jobs as required.

h2: Swaps two randomly selected jobs in the permutation.

h3: Randomly shuffles the entire permutation.
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Table 4 Permutation flowshop instances

instance name source no. jobs no. machines

1 100x20/1 Taillard (2010) 100 20

2 100x20/2 Taillard (2010) 100 20

3 100x20/3 Taillard (2010) 100 20

4 100x20/4 Taillard (2010) 100 20

5 100x20/5 Taillard (2010) 100 20

6 200x10/2 Taillard (2010) 200 10

7 200x10/3 Taillard (2010) 200 10

8 500x20/1 Taillard (2010) 500 20

9 500x20/2 Taillard (2010) 500 20

10 500x20/4 Taillard (2010) 500 20

h4: Creates a new solution using NEH (described above) and using the current

permutation to rank the jobs.

h5: Shuffles k randomly selected elements in the permutation, where k = 2 + bα ·
(n− 2)c, and α is the mutation intensity parameter.

Ruin-recreate heuristics

h6: Remove l, l = bα · (n − 1)c, randomly selected jobs and reinsert them in an

NEH fashion. This heuristic resembles the main component of the iterated

greedy heuristic proposed by Ruiz and Stützle. (2007b) for the permutation

flow shop and later by Ruiz and Stützle. (2007a) for the permutation flow shop

with sequence dependent setup times.

h7: Remove l, where l is as above, randomly selected jobs, reinsert them in an

NEH fashion but this time, at every iteration of the NEH procedure the best q,

q = bβ ·(l−1)c+1, sequences generated so far are considered for the reinsertion.

Local search heuristics

h8: This is a steepest descent local search. At every iteration each job is removed

from its current position and assigned into all remaining positions. The job is

fixed to the position that leads to the best schedule. This is repeated until no

improvement is observed.

h9: This is a first improvement local search. At every iteration each job is removed

from its current position and assigned into the remaining positions. This time,

if an improvement movement is found, this is immediately accepted, and the

search continues with the next job. This is repeated until no improvement is

observed.

h10: This is a random single local search pass. In this, r = bβ(n− 1)c+ 1 randomly

selected jobs are tested (one at a time) on all positions and fixed to the best

possible place. This is only done once.

h11: This is a first improvement random single local search pass. This is as h9 but

jobs are assigned to the first place that improves the current schedule, i.e. jobs

are not necessarily tested in all positions. This is only done once.

Crossover heuristics The following crossover heuristics take two permutations as an

input and return a single new permutation as offspring. These operators have been

designed for permutation representation problems, including scheduling problems.

h13: Partially mapped crossover (PMX): first proposed by Goldberg and Lingle

(1985), as a recombination operator for the traveling salesman probem (TSP).



16

It builds an offspring by choosing a subsequence of a tour from one parent and

preserving the order and position of as many elements (cities in the case of

TSP) as possible. A subsequence of a tour is selected by randomly choosing

two cut points, which serves as boundaries for the swapping operations.

h12: Order crossover (OX): proposed by Davis (1985) for order-based permutation

problems. It builds an offspring permutation by choosing a subsequence of a

solution from one parent and preserving the relative order of elements from the

other parent. The OX operator exploits the property that the relative order of

the elements (as opposed to their specific positions) is important.

h14: Precedence preservative crossover (PPX): independently developed for the ve-

hicle routing problems by Blanton and Wainwright (1993), and for scheduling

problems by Bierwirth et al (1996). PPX transmits precedence relations of op-

erations given in two parental permutations to one offspring at the same rate,

while no new precedence relations are introduced.

h15: This operators selects a single crossover point and produces a new permutation

by copying all of the elements from one parent, up to the crossover point. Then

the remaining elements are copied from the other parent, in the order that they

appear.

3.4 Personnel Scheduling

3.4.1 Description

Problem formulation: Most of the personnel scheduling instances could justifiably

be labelled as a new and different problem rather than just a different instance. This

is because most instances contain unique constraints and objectives, not just different

instance parameters (such as the number of employees, shift types, planning period

length, constraint priorities etc). The reason for this variety is that each instance is

taken from a different organisation or workplace and each workplace has its own set

of rules and requirements. However, there is clearly a similar structure between in-

stances and there are some constraints that are nearly always present. For example,

cover constraints, holiday requests, maximum and minimum workloads etc. The result

of this variety though is that it is arguably impossible to provide a standard mathe-

matical model for ‘The Personnel Scheduling Problem’ and we will not attempt to do

so here. However, for more information on the constraints and objectives present in

the instances used here (and an integer programming formulation of one of them) we

refer the reader to Curtois (2010).

Solution initialisation: The solution is initialised using local search heuristic h5
which adds shifts to each employee’s schedule in a greedy, first improvement manner.

Instance data: The instances used are listed in Table 5.

3.4.2 Search Operators

A total of 12 search operators are implemented for this problem domain.

Mutational heuristics

h1: This heuristic randomly un-assigns a number of shifts. The number of shifts

un-assigned is proportional to the intensity of mutation parameter.
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Table 5 Personnel scheduling instances

shift

name source staff types days

1 BCV-3.46.1 Curtois (2009) 46 3 26

2 BCV-A.12.2 Curtois (2009) 12 5 31

3 ORTEC02 Curtois (2009) 16 4 31

4 Ikegami-3Shift-DATA1 Ikegami and Niwa (2003) 25 3 30

5 Ikegami-3Shift-DATA1.1 Ikegami and Niwa (2003) 25 3 30

6 Ikegami-3Shift-DATA1.2 Ikegami and Niwa (2003) 25 3 30

7 CHILD-A2 Curtois (2009) 41 5 42

8 ERRVH-A Curtois (2009) 51 8 42

9 ERRVH-B Curtois (2009) 51 8 42

10 MER-A Curtois (2009) 54 12 42

Ruin-recreate heuristics The ruin and recreate heuristics implemented are based

on the one presented by Burke et al (2008). The heuristic works by un-assigning

all the shifts in one or more randomly selected employees’ schedules before heuris-

tically rebuilding them. They are rebuilt by firstly satisfying objectives related to

requests to work certain days or shifts and then by satisfying objectives related

to weekends. For example min/max weekends on/off, min/max consecutive work-

ing or non-working weekends, both days of the weekend on or off etc. Other shifts

are then added to the employee’s schedule in a greedy fashion (first improvement)

attempting to satisfy the rest of the objectives.

h2: Burke et al (2008) observed that it was best to un-assign and rebuild only 2-6

work patterns at a time (for instances of all sizes). For this reason the first ruin

and recreate heuristic un-assigns x schedules where x is calculated using the

intensity of mutation parameter as follows:

x = Round(intensityOfMutation * 4) + 2

h3: This heuristic provides a larger change to the solution by setting x using:

x = Round(intensityOfMutation * Number of employees in roster)

h4: This heuristic creates a small perturbation in the solution by using x = 1.

Local Search Heuristics

h5: This is a first improvement local search which adds shifts to employees’ sched-

ules.

h6: This is a first improvement local search which swaps shifts between two different

employees. An example of the type of swap this local search may make is shown

in Figure 3. The figure shows a section of a roster showing the the first ten days

of the schedules for four employees: ‘A’, ‘B’, ‘C’ and ‘D’. The coloured squares

labelled ‘D’, ‘E’ and ‘N’ denote three different shifts types (Early, Day and

Night)

h7: This is a first improvement local search which swaps shifts in a single employee’s

schedule. An example of the type of swap this local search may make is shown

in Figure 4.

h8: This is based on the ejection chain method described by Burke et al (2007). The

maximum search time for it is set as: the depth of search parameter multiplied

by 5 seconds.



18

h9: This is another version of the ejection chain method which incorporates a greedy

heuristic method for generating entire schedules for single employees. The max-

imum search time for it is set as: the depth of search parameter multiplied by

5 seconds.

Fig. 3 An example of the types of swap made by h6

Fig. 4 An example of the types of swap made by h7

Crossover heuristics

h10: This heuristic was presented by Burke et al (2001). It operates by identifying

the best x assignments in each parent and making these assignments in the

offspring. The best assignments are identified by measuring the change in ob-

jective function when each shift is temporarily unassigned in the roster. The

best assignments are those that cause the largest increase in the objective func-

tion value when they are unassigned. The parameter x ranges from 4-20 and is

calculated using the intensity of mutation parameter as below:

x = 4 + round((1 - intensityOfMutation) * 16)

h11: This heuristic was published in (Burke et al, 2010b). It creates a new roster by

using all the assignments made in the parents. It makes those that are common

to both parents first and then alternately selects an assignment from each parent

and makes it in the offspring unless the cover objective is already satisfied.

h12: This heuristic creates the new roster by making assignments which are only

common to both parents.

4 Algorithms

This section presents three example algorithms created within the HyFlex software

framework. We present these algorithms in order to show the range of algorithms

that can be easily implemented in HyFlex. The results of these three algorithms are

presented in section 5, to show the diversity of their results across the different problem
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instances and problem domains. Recall from section 2.1.1 that HyFlex problem domains

are always implemented as minimisation problems, so a lower fitness is superior.

4.1 Iterated Local Search

Iterated local search is a relatively straightforward algorithm. As often happens with

many simple but sometimes very effective ideas, the same principle has been rediscov-

ered multiple times, leading to different names (Baxter, 1981; Martin et al, 1992). The

term iterated local search was proposed byLourenco et al (2002). The implementation

reported here, first proposed in in (Burke et al, 2010a), contains a perturbation stage

during which a neighborhood move is selected uniformly at random (from the available

pool) and applied to the incumbent solution. This perturbation phase is then followed

by an improvement phase, in which all local search heuristics are tested and the one

producing the best improvement is used. If the resulting new solution is better than

the original solution then it replaces the original solution, otherwise the new solution

is simply discarded. This last stage corresponds to a greedy (only improvements) ac-

ceptance criterion. The pseudo-code of this iterated local search algorithm is shown

below (Algorithm 3).

Algorithm 3 Iterated Local Search.

s0 = GenerateInitialSolution

s∗ = LocalSearch(s0)

repeat

s′ = Perturbation (s∗)
s∗

′
= LocalSearch(s′)

if f(s∗
′
) < f(s∗) then

s∗ = s∗
′

end if

until time limit is reached

4.2 Tabu Search Hyper-heuristic with Adaptive Acceptance (TS-AA)

The functionality of this hyper-heuristic can be split into two parts, the heuristic

selection mechanism and the move acceptance criteria. The pseudocode for TS-AA

can be seen in Algorithm 4.

Heuristic selection mechanism for TS-AA: This hyper-heuristic implements the

heuristic selection mechanism proposed in (Burke et al, 2003b).The algorithm main-

tains a value for each of the problem-specific heuristics, excluding the crossover type

heuristics. The crossover heuristics are not used at all by this hyper-heuristic. The

heuristic’s value represents how well it has performed recently, and all heuristics have

a value of zero at the beginning of the search. The mechanism also incorporates a dy-

namic tabu list of problem-specific heuristics that are temporarily excluded from the

available heuristics.

At each iteration, the heuristic with the highest value is selected (breaking ties ran-

domly), from those not in the tabu list. Therefore, the heuristics which have performed
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well recently will be chosen more often. If the heuristic finds a better solution, then its

value is increased. If it finds a worse solution, its value is decreased.

Acceptance criterion for TS-AA: The acceptance criterion accepts all improving

solutions. Other solutions are accepted with a probability β. which changes depending

on whether the search appears to be progressing or stuck in a local optimum. The β

value begins at zero, thus, initially, it is an accept-only-improving strategy. However,

if the solution does not improve for 0.1 seconds, then β is increased by 5%, making it

more likely that a worse solution is accepted. It is increased to 10% if there is no further

improvement in the next 0.1 seconds. Conversely, if the search is progressing well, with

no decrease in fitness in the last 0.1 seconds, then β is reduced by 5%, making it less

likely for a worse solution to be accepted. These modifications are intended to help the

search navigate out of local optima, and to focus the search if it is progressing well.

4.3 Memetic Algorithm

This algorithm illustrates a population based approach implemented with HyFlex. It

represents a steady-state evolutionary algorithm that incorporates multiple memes (a

memetic algorithm). The pseudocode is given in Algorithm 5. First a population of

10 solutions is generated, each one initialised with the initialiseSolution() method

provided by each problem domain. Two solutions are selected with a binary tournament

method, and then a crossover type heuristic (selected uniformly at random from the

available set) is applied to produce one offspring.

With 0.1 probability, the offspring is perturbed with a mutation heuristic (selected

uniformly at random from the available set). Then the solution is further modified with

either a local search heuristic or a ruin-recreate heuristic, chosen with a 0.5 probability

(also selected each uniformly at random). If the new solution is equal to or better than

the worst of the parents, then the offspring replaces it.

5 Experiments and Results

This section compares the three algorithms described in section 4 implemented with

HyFlex. Exactly the same algorithms are used for each domain and instance. No

domain-specific (or instance-specific) tuning process is applied. The goal is not to

determine which is the best performing algorithm, but instead to illustrate the be-

haviour of different algorithmic designs in HyFlex. The 10 training instances for each

domain, as described in section 2 (Tables 2-5), were considered. For each instance and

algorithm, 5 runs were conducted, each lasting 10 CPU minutes. This experimental

setup resembles that designed for the CHeSC competition. The experiments were con-

ducted on a PC (running Windows XP) with a 2.33GHz Intel(R) Core(TM)2 Duo CPU

and 2GB of RAM. The following subsections present our results from three different

perspectives: ordinal data analysis (5.1), distribution of best objective function values

on one selected instance per domain (5.2), performance behaviour over time on one

example instance of the bin packing domain (5.3).
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Algorithm 4 The Tabu Search Hyper-heuristic with Adaptive Acceptance

Create a initial solution s

Initialise the value of each heuristic to 0

α = 1

β = 0

t = tabu tenure = number of heuristics-1

repeat

Create a copy of the current solution: s′ ← s

H = heuristic with highest value

apply H to s′

if func(s′) < func(s) then {the new solution is superior}
increaseV alue(H,α)

else if func(s′) < func(s) then {the new solution is worse}
empty the tabu list

decreaseV alue(H,α)

add H to the tabu list

else if func(s′) = func(s) then

add H to the tabu list

release heuristics in tabu list for longer than t iterations

end if

if func(s′) < func(s) then

s← s′

else

if random[1, 100] < β then

s← s′

end if

end if

if 0.1s since last improvement then

{make it more likely to accept worse solutions}
β ← β + 5

end if

if 0.1s since last decrease in fitness then

{make it less likely to accept worse solutions}
β ← β − 5

end if

until time limit is reached

5.1 Borda count

Ordinal data analysis methods can be applied to compare alternative search algorithms

or metaheuristics (Talbi, 2009). This approach is adequate because our empirical study

considers different domains and instances with varied magnitudes and ranges of the

objective values. Let us assume that m instances (considering all the domains) and

n competing algorithms in total are considered. For each experiment (instance) an

ordinal value ok is given representing the rank of the algorithm compared to the others

(1 ≤ ok ≤ n). Ordinal methods aggregate and summarise m linear orders ok into a

single linear order O. We use here a straight forward ordinal aggregation method know

as the Borda count voting method (after the French mathematician Jean-Charles de
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Algorithm 5 Memetic algorithm

population = Create a initial population of 10 solutions

repeat

s1 = binaryTournament(population);

s2 = binaryTournament(population);

h = randomly selected crossover heuristic

s′ = applyheuristic(h, s1, s2);

Apply randomly selected mutation heuristic to s′

if rand < 0.5 then

h = randomly selected local search heuristic

else

h = randomly selected ruin-recreate heuristic

end if

applyheuristic(h, s′);
if f(s1) worse than f(s2) then

s1← s′

else

s2← s′

end if

until time limit is reached

Table 6 Borda count results for all domains

Domain TS-AA ILS MA

MAX-SAT 12 27 21

1D Bin Packing 24 17 19

Permutation Flow Shop 30 17 13

Personnel Scheduling 13 16 30

Total 79 77 83

Borda, who first proposed it in 1770). An algorithm having a rank ok in a given instance

is simply given ok points, and the total score of an algorithm is the sum of its ranks

ok across the m instances. The methods are, therefore, compared according to their

total score, with the smallest score representing the best performing algorithm. In our

comparative study, the number of instances, m, is 40 (10 for each domain). Therefore,

for a given domain the best possible score is 10, while the best possible total score

(considering all the domains) is 40. The ranks were calculated using as a metric the

median of the best objective functions obtained across the 5 runs per instance.

Table 6 shows the total Borda scores for the three competing algorithms, including

the total scores per domain. Notice that although TS-AA produces the best scores in

two domains: MAX-SAT and permutation flow shop; the ILS algorithm obtains the

best overall scores, although by a minimal difference. Tables 7-10 show the Borda count

(ranks) for each instance on the four domains, where 1 represents the best rank. These

tables are useful to assess how homogeneous the results are for the ten instances on

each domain. For example, for permutation flow shop and personnel scheduling (Tables

9-10) a single algorithm is consistently ranking 3rd, whereas this is not the case for

MAX-SAT and bin packing (Tables 7-8).
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Table 7 Borda count results for MAX-
SAT

MAX-SAT TS-AA ILS MA

Instance1 2 3 1

Instance2 2 3 1

Instance3 1 3 2

Instance4 1 2 3

Instance5 1 2 3

Instance6 1 2 3

Instance7 1 3 2

Instance8 1 3 2

Instance9 1 3 2

Instance10 1 3 2

Total 12 27 21

Table 8 Borda count results for 1D Bin
Packing

Bin Packing TS-AA ILS MA

Instance1 3 1 2

Instance2 3 1 2

Instance3 3 2 1

Instance4 2 3 1

Instance5 2 1 3

Instance6 3 1 2

Instance7 3 1 2

Instance8 3 1 2

Instance9 1 3 2

Instance10 1 3 2

Total 24 17 19

Table 9 Borda count results for permu-
tation flowshop

Flow Shop TS-AA ILS MA

Instance1 3 2 1

Instance2 3 1 2

Instance3 3 2 1

Instance4 3 2 1

Instance5 3 2 1

Instance6 3 2 1

Instance7 3 2 1

Instance8 3 1 2

Instance9 3 1 2

Instance10 3 2 1

Total 30 17 13

Table 10 Borda count results for person-
nel scheduling

Personnel Sched. TS-AA ILS MA

Instance1 1 2 3

Instance2 2 1 3

Instance3 1 1 3

Instance4 2 1 3

Instance5 1 2 3

Instance6 2 1 3

Instance7 1 2 3

Instance8 1 2 3

Instance9 1 2 3

Instance10 1 2 3

Total 13 16 30

5.2 Distribution of the best objective function values

In addition to the Borda aggregation method presented above, the boxplots shown in

figures 5-8 illustrate the magnitude and distribution of the best objective values (at the

end of the run) for a selected instance of each domain. Each figure represents the result

of 10 runs from each algorithm. Arbitrarily we selected instance number 1 from each

domain, but similar distributions of results can be observed in the other instances.

From figures 5-8, it can be observed that the performance of the three algorithms

differs significantly over the four problem instances. For example, in the max-sat in-

stance (figure 5) the memetic algorithm (MA) performs the best, while it performs

the worst in personnel scheduling instance(figure 8). The tabu search hyper-heuristic

(TS-AA) clearly performs the worst on the instances of bin packing and flow shop

(Figures 6-7), but performs the best on the personnel scheduling instance. The scale of

Figure 8 means that it is difficult to see the difference between TS-AA and ILS. This

is because the personnel scheduling domain applies penalties to solution that violates

the constraints, and the memetic algorithm produced poor solutions in this instance.
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In summary, these boxplots show that it is challenging to design an algorithm

which operates well over all the problem domains. When an algorithm improves on

one domain, its solution quality may reduce on another domain. This can also be true

in a single domain, when an algorithm improves on a particular problem instance,

and its performance reduces on other instances of that domain. The challenge is to

design online learning mechanisms that can adapt on the fly, and thus select the most

adequate heuristic at each decision step, using the feedback gathered from the search

process.

Fig. 5 Distribution of objective func-
tion values for the MAX-SAT instance 1:
contest02-Mat26.sat05-457.reshuffled-07

Fig. 6 Distribution of objective function
values for the bin packing instance 1:
falkenauer/u1000-00

Fig. 7 Distribution of objective function
values for the permutation flow shop in-
stance 1: 100x20/1

Fig. 8 Distribution of objective function
values for the personnel scheduling in-
stance 1: BCV-3.46.1

5.3 Progress of algorithms during a run

Figure 9 shows the progress of the three algorithms during one 10 minute run on

instance 1 of Bin Packing. A lower fitness value represents a better solution. This in-

formation is easily available from within HyFlex by calling the getFitnessTrace()
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Fig. 9 1D Bin Packing trace on instance 1, showing the progress of the
three example algorithms over 10 minutes

method, and it is automatically recorded during the run. They show that the perfor-

mance of the algorithms can differ greatly depending on how long they are left to run.

Iterated local search (ILS) and the memetic algorithm (MA) both finish the run at

approximately the same fitness. However, the memetic algorithm finds better quality

solutions more quickly. The tabu search hyper-heuristic (TS-AA) begins the run by

finding better solutions than ILS, but TS-AA stagnates, and by the end of the run ILS

has found a better solution. This ability to easily obtain useful information for analysis

is another way that HyFlex can save a significant amount of time for researchers.

6 Conclusions

This paper has presented and described the HyFlex software framework for the de-

velopment of cross-domain heuristic search methodologies. HyFlex provides multiple

problem domains, each containing a set of problem instances and search operators to

apply. Therefore, it represents a novel extension of the notion of benchmark for com-

binatorial optimisation, with which cross-domain algorithms can be easily developed,

and reliably compared. Researchers from different communities and themes within

computer science, artificial intelligence and operational research, can potentially bene-

fit from HyFlex, as it provides a common benchmark in which to test the performance

and behavior of single-point and population-based self-configuring search heuristics.

When using HyFlex, researchers can concentrate their efforts on designing their adap-

tive methodologies, rather than implementing the required set of problem domains.

This paper describes the architecture of HyFlex, including examples of how to

create and run hyper-heuristics within the framework. The four problem domains are

presented and discussed, and three example hyper-heuristics are analysed, with their

results. The results show that the hyper-heuristics all have differing performances on the
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four problem domains. No one algorithm is superior to the other two algorithms on all

four problem domains. Although these are not state-of-the-art adaptive algorithms, the

results suggest that there is still considerable scope for future research when desiging

adaptive and self-configuring algorithms that can learn from the search process and

select the most suitable search operators.

There is currently ample evidence that HyFlex is useful to the research community,

due to the number of researchers which are currently employing it for their research

and teaching. The HyFlex framework was made publicly available in August 2010.

In May 2011, the software had been downloaded over 460 times, and the associated

web-pages describing it had been visited over 11,844 times. The community has also

responded well to a call for participation in the International Cross-domain Heuristic

Search Challenge (CHeSC), which would not be possible without the HyFlex software.

In May 2011, the competition had 43 registered participants and teams from 23 different

countries.

HyFlex can be extended to include new domains, additional instances and operators

in existing domains, and multi-objective and dynamic problems. The current software

interface can also be extended to incorporate additional feedback information from

the domains to guide the adaptive search controllers. It is our vision that the HyFlex

framework will continue to facilitate and increase international interest in developing

adaptive heuristic search methodologies, that can find wider application in practice.
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