
STSTray Documentation (Version 2.0) Page 1 Printed: 10/22/2005 5:30 PM

2.0

The scriptable tray icon utility

User’s Guide

Developed by

1511 Fairway Street, Eau Claire, WI 54701

Phone: (715) 831-8988 Fax: (775) 429-1203
Web: http://www.sonsothunder.com/
Email: ststray@sonsothunder.com

STSTray, the Scriptable Tray Icon Utility
©2002-2005 Sons of Thunder Software, All Rights Reserved

STSTray Documentation (Version 2.0) Page 2 Printed: 10/22/2005 5:30 PM

Table of Contents

Introduction ..4
Technical Support/Contact Info...5
System Requirements ...5
Installing STSTray ...5
Scripts..5
The “Active Handlers”..6
Commenting Scripts/White Space...7
Launching STSTray ...7
Polling Mode...7
The “Output File”...8
Special Characters ..9
File Paths ...9
Quitting STSTray ..9
TrayScript Language Guide...10

Commands ... 10

answer .. 10
beep.. 12
check for updates ... 12
create menu.. 15
delete file .. 16
do nothing... 16
download .. 17
flash icon... 18
goURL... 18
install handler ... 19
launch ... 20
popup menu.. 21
quit .. 21
set icon ... 22
set outputFile .. 22
set polling.. 23
set scriptID.. 24
set silentErrors.. 24
set timer.. 25
set tooltip .. 26
show balloon... 26
stop flashing.. 27
stop swapping... 28
stop timer.. 28
swap icon.. 29
write .. 29

Handlers .. 30

STSTray Documentation (Version 2.0) Page 3 Printed: 10/22/2005 5:30 PM

on altShowBalloon.. 30
on balloonClick ... 31
on balloonClose.. 31
on balloonShow .. 32
on doubleLeftClick (on doubleClick) .. 32
on doubleLeftClickOneTime (on doubleClickOneTime) .. 33
on doubleRightClick ... 33
on doubleRightClickOneTime.. 34
on itemSelect.. 34
on leftClick (on click) .. 35
on leftClickOneTime (on clickOneTime) .. 36
on openScript ... 37
on rightClick.. 37
on rightClickOneTime... 38
on scriptError.. 38
on timerEvent ... 39

Examples ..40

Reminder Application .. 40

Notifying Users of Product Updates.. 43

STSTray Documentation (Version 2.0) Page 4 Printed: 10/22/2005 5:30 PM

STSTray 2.0

Introduction
STSTray is a solution that can be used with any application1 so long as it can read and write plain text files. At
its simplest, it is an application that allows you to display an icon in the Windows system tray. But that’s not all
that it is able to do, it can also:

• Display a menu when the user clicks on the icon, and take actions when the user selects an item from
the menu, including communicating back to your application what the user selected

• Display a tooltip when the mouse passes over the icon

• Display a balloon under XP on demand

• Flash the icon at a user-settable time interval

• Switch back and forth between two icons at a user-settable time interval

• Display an “answer” dialog box with different settings, and capture the selection made by the user to
pass back to your application

• Write a file to disk

• Launch a program

• Delete a file from disk (new in 2.0)

• Prepare an email in your local email program (new in 2.0)

• Open a web browser and surf to a specific web site (new in 2.0)

• Download files from the Internet (new in 2.0)

• Check a web server and notify users when updates to your product is available (new in 2.0)

• Perform actions based on a timed interval, either once, or every X period of time (new in 2.0)

• Perform actions on trapped events in one of two ways: once only, or every time the event occurs (new
in 2.0)

• and more…

How would you use this? Here are a few scenarios where this utility can come in handy:

• To Let Everyone Know When a New Product Update is Available: You have distributed STSTray
to your customers along with your product. When an update to your product is available, you simply
update a single file on your web server, and then everyone gets notified via STSTray (perhaps a
balloon or alert box, which when clicked would go to the web and see your info on the updated
product).

• For Notification: You have a program that acts like a background process and needs to notify the user
when the job is done. It could flash the icon in the tray, and when the user clicked on it, it could
display a custom message.

1 STSTray was originally designed with support for xTalk programming environments such as Revolution, MetaCard, etc. in
mind, but its application is quite universal.

STSTray Documentation (Version 2.0) Page 5 Printed: 10/22/2005 5:30 PM

• As a Reminder: Your program creates scheduled events, and you want to remind your user when
something is scheduled to occur. It could show a balloon or flash the icon in the tray, and when the
user clicked on it, it could display a custom message.

• As a Launcher: You want to give your users a nice way to launch your program, or to set certain
preferences. You could install an icon in their tray, and they could click and display a menu allowing
them to launch your program or display a message.

Technical Support/Contact Info
STSTray was developed by Sons of Thunder Software (http://www.sonsothunder.com/). If there are any
technical support issues, comments or questions, please send them via email to ststray@sonsothunder.com.

System Requirements
This utility was written in Visual Basic 6.0, and will run on Windows 95 and higher, and requires version 5.0 of
the VB library or higher on the target system. This file is called either msvbvm50.dll or msvbvm60.dll and
exists in the “System” directory for the target Windows platform (c:\windows\system,
c:\windows\system32 or c:\winnt\system32). This library is very common, and will most likely already
be present on the target system. It is recommended that your installer check first to see if it exists before
installing it. Included in the STSTray package is version 6.0 of the library (msvbvm60.dll) that you can install
as needed.

Installing STSTray
STSTray only requires that the VB Library be present on the machine, and so you can “install” STSTray
anywhere you like, so long as it is on a writeable volume (STSTray uses special files to control its behavior). If
the VB Library is not installed, you can install it either in the same directory as STSTray, or you can install it
into the Windows, WinNT or System32 directory. Once installed, all you need to is launch STSTray with the
proper script file.

Scripts
Scripts are files that tell STSTray what to do, how to look, and how to act. The scripting language is called
TrayScript and is very similar to other xTalk languages in products such as HyperCard, SuperCard, ToolBook,
MetaCard, etc.). The TrayScript language has only a handful of commands and events. Luckily, this handful
will accommodate most people’s needs. TrayScript is divided into two main pieces – commands that cause
actions to occur, and event handlers (“handlers”) that are triggered when an event occurs, and in turn execute
one or more commands.

For example, when a TrayScript file is opened by STSTray to be processed, it looks for the on openScript
handler in that file and processes the commands within that handler. This simple script would bring up an alert
dialog box that says “Hello”:

on openScript
 answer "Hello"
end openScript

Additional handlers in the TrayScript file determine what should occur when a certain event happens. For
example, the following TrayScript not only displays an alert dialog that says “Hello” when the script is run, but
also sets up an event that traps the user double-clicking on the icon in the tray; when the user does this, it
launches the Notepad application:

STSTray Documentation (Version 2.0) Page 6 Printed: 10/22/2005 5:30 PM

on openScript
 answer "Hello"
end openScript

on doubleClick
 launch "c:\windows\notepad.exe"
end doubleClick

Of course more detailed explanations of each command and event are located in the TrayScr ipt Language Guide
section of this document.

There are two different kinds of TrayScript files: boot scripts (which are executed when STSTray launches (see
Launching STSTray , below)) and drop scripts (which are executed after STSTray has been launched (see Polling
Mode, below)).

The “Active Handlers”
Each TrayScript file that is opened will execute what is in the on openScript handler within the file, but all
other handlers are loaded into memory, and are triggered later on when a matching event occurs. These handlers
that remain in memory are called the Active Handlers.

STSTray allows for multiple TrayScript files to be opened during its operation (through the use of drop scripts
(see Polling Mode , below)), and if the handlers that are read in at that time are different than those currently
loaded in the Active Handlers, they will be added to the Active Handlers. If one or more handlers are read in
that are the same as any handlers currently in the Active Handlers, the new handlers replace the old one(s) in
the Active Handlers.

For example, suppose you launched STSTray and opened one TrayScript file that contained the following:

on doubleClick
 launch "c:\windows\notepad.exe"
end doubleClick

The Active Handlers would only contain the code above (since nothing had been previously loaded). If you then
opened another TrayScript file that contained:

on leftClick
 answer "Hello there!"
end leftClick

The Active Handlers would contain both handlers:

on doubleClick
 launch "c:\windows\notepad.exe"
end doubleClick

on leftClick
 answer "Hello there!"
end leftClick

If you later opened a TrayScript file that contained:

on leftClick
 beep
end leftClick

The old leftClick handler would be replaced by the new one, and the Active Handlers would look like this:

on doubleClick
 launch "c:\windows\notepad.exe"
end doubleClick

STSTray Documentation (Version 2.0) Page 7 Printed: 10/22/2005 5:30 PM

on leftClick
 beep
end leftClick

This can be very useful for replacing outdated scripts, or to cause a popup menu that is displayed from the icon
on the system tray to be changed with a different menu.

Note: If you ever want to remove a handler from the Active Handlers, you actually need to load up an empty
handler (one that has no commands) through the use of a drop script. So using the example above, if you wanted
to have nothing happen when the user clicked the tray icon with the left mouse button (leftClick), you could
load a TrayScript file that looked like this:

on leftClick
end leftClick

Commenting Scripts/White Space
You can comment out a script line by using a double-hyphen (--) or a pound s ign (#) before a line of script.
Commented script lines will be ignored by the interpreter. Blank lines and any spaces or tabs that preceded a
line will be ignored as well, so please take advantage of this for readability in your scripts.

Launching STSTray
The STSTray is a small (112K) executable (ststray.exe) that you would launch from your application,2 or
during the startup process of your computer (by placing a shortcut in the Startup folder in the Programs folder in
the Start menu).

When STSTray launches, it will look for a TrayScript file called boot.scp (called the “boot script”). If it finds
one, it will open up and examine its contents, and execute everything found in the on openScript handler and
store the rest of the script in the Active Handlers (so it can take actions later based on matching events).

Launch time is a good time to set up the menu (if you want one (see the insert menu command)), change the
icon to an icon of your choosing (if you want something other than the STSTray icon (see the set icon
command)), and/or set the tooltip for the icon (see the set tooltip command).

After it has read the script into memory and executed it , it will go into polling mode.

Polling Mode
After STSTray has launched and processed the boot script file, it will go into polling mode, checking every 500
milliseconds3 to see if there are any files with a .scp extension that are in the same directory as the executable
(also called a “drop script”). If there are, it will do the following for each drop script that it finds:

1. Open the .scp file and read the contents into memory.

2. Execute any commands found in the on openScript handler (if there is one).

3. Store the rest of the handlers found in the Active Handlers, either adding them or overwriting handlers
that are already loaded.

4. Delete the .scp file and go back to polling.

This can be used to communicate with STSTray from your application.

2 For MetaCard/Revolution users, this would be either the launch, shell or open process commands.
3 This interval can be changed by using the set polling command.

STSTray Documentation (Version 2.0) Page 8 Printed: 10/22/2005 5:30 PM

Example for MetaCard/Revolution Users

For example, supposed you wanted to cause a notification balloon to be displayed (under Windows XP or
greater). you could execute this code (assuming STSTray is installed in the default location):

on showTrayBalloon
 put "c:\Program Files\STS\STSTray\showballoon.scp" into tScriptFile
 put "on openScript" & cr & "show info balloon with" && \
 q("Ready to go?") && "titled" && q("Question:") & cr & \
 "end openScript" into url("file:" & tScriptFile)
end showTrayBalloon

function q what
 return quote & what & quote
end q

Example for Visual Basic Users

To do this same thing in Visual Basic, you could use the following code:

Private Sub ShowTrayBalloon()
 strScriptFile = "C:\Program Files\STS\STSTray\showballoon.scp"
 strScript = "on openScript" & vbCrLf & "show info balloon with " & _
 q("Ready to go?") & " titled " & q("Question:") & vbCrLf & _
 "end openScript"
 Open strScriptFile for Output as #1
 Print #1,strScript
 Close #1
End Sub

Private Function q(ByVal strData as String)
 q = Chr(34) & strData & Chr(34)
End Function

The “Output File”
There are times when it is important that your application know what the user has done with STSTray so that
an action can be taken. For example, if the user selects from a menu item created with create menu, or clicks
a particular button in an answer dialog box4, or double-clicks the icon, there needs to be some way for
STSTray to communicate with your application.

To do this, STSTray writes out a text file that your application can be looking for in a specific directory. When
the file is written by STSTray, your application can pick it up and act on it.

STSTray will automatically send data to an “output file” called output.txt that resides in the same directory
as the STSTray application. This can be changed using the set outputFile command. When STSTray writes
data to its output file it will automatically create the file if it does not exist, or will append to it if it exists. It is
the responsibility of your application to delete or rename this file if you don’t want this appending to occur (or
to use the delete file command in STSTray).

4 This assumes you chose not to implement the switch result block (see the answer command for more info).

STSTray Documentation (Version 2.0) Page 9 Printed: 10/22/2005 5:30 PM

Special Characters
Many commands have text parameters. For those commands, you can use the following special characters,
which will be substituted automatically during the command’s operation:

 \n new line (linefeed/return)

 \' Double quotation mark (")

 %d% Inserts the current date

 %t% Inserts the current time

For example, the following command:

answer "This is line 1\nThis is line 2"

would bring up a message box that showed this:

This is line 1
This is line 2

File Paths
Many commands accept file paths as parameters. In those cases, you can either supply an absolute path or a
relative one (both \-delimited and /-delimited are accepted), and if the path is relative, you can use ../ or ..\
variations to “back up” in the directory hierarchy. File paths are not case sensitive. Relative paths are calculated
based on the location of the currently running STSTray executable. So for example, if STSTray were located at
C:\Program Files\STSTray\STSTray.exe, and you wanted to refer to a file called “MyFile.txt” that was at the
root of the C: drive, any of the following paths will work and are equivalent:

C:\MyFile.txt
C:/MyFile.txt
../../MyFile.txt
..\..\MyFile.txt

Quitting STSTray
STSTray is designed to attempt to prevent you from leaving an icon in the tray and having no way to remove it.
So there are three ways to quit STSTray (thus removing the icon from the system tray):

1. If you have not assigned a menu to the tray icon with the create menu command, clicking the icon
with the left mouse button will quit STSTray.

2. If you have assigned a menu to the tray icon with the create menu command, and the menu has a
“Quit” or “Exit” menu item, selecting either “Quit” or “Exit” will quit STSTray, unless you have
defined a case statement in the itemSelect handler to trap the “Quit” or “Exit” menu items and
execute your own custom commands. (NOTE: If you do choose to trap either “Quit” or “Exit”
yourself, please make sure to include the quit command at the end of your custom commands,
otherwise STSTray will not be able to be closed through a mo use or menu action.)

3. Executing the quit command from an on openScript handler in a drop script and putting it in the
same directory as STSTray (so that it loads and executes).

STSTray Documentation (Version 2.0) Page 10 Printed: 10/22/2005 5:30 PM

TrayScript Language Guide

Commands

answer
Summary
 This command displays an alert dialog box, with an icon, title, and your choice of buttons.

Syntax
 There are actually two syntax forms for this command, depending whether you want the result (the button the

user clicked) to be written to the output file or whether you want to take action on the choice directly in the
script. The basic syntax is this:

 answer [{info[rmation]|question|warning|error}] text
 [with {"OK"|"OKCancel"|"YesNo"|"YesNoCancel"}] [titled title]

If you want the result to be written to the output file, this is all you need to do. If, however, you want to trap the
result and take action on it in the script, you need to follow the answer command with the following switch
result construct:

 switch result
 case btn1Name
 commands
 [case btn2Name
 commands
 [case btn3Name
 commands]]
end switch

Note that even if there is only one button, you still need to use switch result in order to execute commands
after the user has clicked the button.

Arguments
info[rmation]
question
warning
error

Optional. This is the type of icon to display. If no icon type is chosen, STSTray will
use the information icon.

text This is the text to display in the dialog box, enclosed in quotes. Special characters are
substituted (see Special Characters, above).

OK
OKCancel
YesNo
YesNoCancel

Optional. These are the kinds of buttons that the user can choose from. When a button
is selected, the chosen button is sent to the output file (if there is no switch result
construct following the answer command), or will attempt to be matched to a case in
a switch result construct (if one exists). Note that these are case-sensitive. If not
provided or incorrectly provided, it will default to “OK”.

title Optional. This is the title to display in the dialog box, enclosed in quotes. If not
specified, the title bar will be empty. Special characters are substituted (see Special
Characters, above).

btn1Name,
btn2Name,

Used by the switch result construct, matches to the specific button clicked will
execute the indented commands below the case statement.

STSTray Documentation (Version 2.0) Page 11 Printed: 10/22/2005 5:30 PM

btn3name

Description
This command will bring up a dialog box based on the arguments above. When a button is clicked, one of two
things will happen:

1. If a switch result construct appears immediately after the answer command, an attempt will be
made to match the name of the button clicked with a corresponding case statement in the switch
result construct. If a match is found, the commands listed beneath that case statement are executed.
If no match is found, nothing will happen and no error will be generated. Note that there is no case for
default action if nothing is matched; you need to provide a case statement for every button choice that
you wish to take action on.

If a button takes no action (for example, clicking the “No” choice in a “Are you sure you want to
delete this file?” dialog box), you have three options: (a) you can omit the case completely, (b) you
can include the case, but not provide any statements underneath the case, or (c) you can include the
case and insert the do nothing command underneath the case. See the entry for the do nothing
command for more info.

2. If there is no switch result construct immediately below the answer command, the name of the
button will be written to the output file (see The “Output File” above for more information).

Example 1:
 This script displays this dialog box when the script file is opened, and writes the result to the output file:

on openScript
 answer info "Are you happy today?" with "YesNo" titled "Happy Poll"
end openScript

Example 2:
 This script does the same thing as Example 1, but provides feedback to the user based on their response:

on openScript
 answer info "Are you happy today?" with "YesNo" titled "Happy Poll"
 switch result
 case "Yes"
 answer "Glad to hear it!"
 case "No"
 answer "I'm sorry to hear that!"
 end switch
end openScript

Note the response to the feedback dialog box (which would display a simple “OK” button) are written to the
output file since there is no switch result construct that exists underneath the feedback answer commands.

See also
 do nothing, set outputFile, write

STSTray Documentation (Version 2.0) Page 12 Printed: 10/22/2005 5:30 PM

beep
Summary
 This command simply issues a beep sound.

Syntax
 beep

Arguments
none

Example
 This is an example of causing a beep to sound when a menu item called “Play Beep” is selected:

on itemSelect
 case "Play Beep"
 beep
 -- of course there would be more menu items defined here
end itemSelect

check for updates
Summary

 This command is used to automatically download and examine a drop script file from a web server, and if it is
newer than the last time it checked, it will execute the commands within that drop script file. This is usually
used to notify a number of users simultaneously of a product update, or other piece of information.

Syntax
 check url [for updates]

Arguments
url The absolute URL to the drop script file on the web server.

Description
This command, when executed, will download the drop script file located at url, open it, and see if it is newer,
and if it is, it will run it as if the file had been dropped into the STSTray directory (see Polling Mode above, for
more information on drop scripts).

To do this, STSTray needs to have a method of identifying whether a drop script is newer or not. It does this by
comparing script IDs, which are set specifically using the set scriptID command inside the on openScript
handler of the drop script you are downloading from url. Here’s how it works:

• When STSTray launches, it checks to see if there is a ststray.ini file in the same directory as the
STSTray executable. The format of this INI file is very simple, and looks something like this:

[Updates]
LastID=1000

• If the ststray.ini file exists , it looks into it and tries to read the LastID key of the [Updates]
section. If then sets an internal lastID variable to the ID number it reads from the INI file (which
would be 1000 in the example above).

STSTray Documentation (Version 2.0) Page 13 Printed: 10/22/2005 5:30 PM

• If the ststray.ini file does not exist, or it exists but does not have the proper LastID key of the
[Updates] section, it creates the file with an empty LastID key and sets the internal lastID
variable to empty.

• When the check for updates command is executed, it downloads the drop script file at url to a
temporary file in the same directory as the STSTray executable (to a file called ststray.tmp), opens
it up, examines its on openScript handler, and looks for a set scriptID command.

o If it finds one, it extracts the ID from the set scriptID command (the “incoming ID”) and
compares it against the value stored in its lastID internal variable (the “stored ID”).

§ If the incoming ID is the same as the stored ID, it means that this script has already
been read and executed before, so it does nothing, and deletes the temporary file.

§ If the incoming ID is different than the stored ID, it will write the incoming ID to the
LastID key in the INI file, and set its stored ID to the value of the incoming ID. It
will then execute the script file as if it had been dropped in the STSTray directory
(running the commands contained in the file’s on openScript handler (if any)), and
finally delete the temporary file.

o If it doesn’t find a set scriptID command in the temporary drop script file, it means the
drop script file was not set up properly, so it ignores it and deletes the temporary file.

• If for some reason no file can be found at url, no error is generated. The reason for this is that is
provides more flexible deployment support (see the Example below).

The check for updates command can be executed manually (i.e. attached to a menu item or an on
openScript handler), or for maximum utility, it can be executed periodically using the set timer command
and the on timerEvent handler, as shown in Example 1 below.

You may want to know whether there was an update or not, especially if check for updates was executed
manually. To do this, STSTray can report whether the incoming ID is the same as the stored ID and you can
take action on this by following the check for updates command with the switch result construct:

 switch result
 case "same"
 commands
 case "different"
 commands
end switch

This switch result is evaluated after any downloaded drop script is executed. Note that just as in answer,
you can choose to omit either of the cases above or use the do nothing command if you want to show both
cases but take no action on one of them. See Example 2 below for how this might be used.

Example 1:
 You have a product that you sell that you want to be able to notify users immediately when a new update is

available. So you include STSTray in your installer, install it in a directory of your choosing, and install a
shortcut to STSTray in your Startup folder to make sure that it loads properly every time the user starts up their
computer. You install a boot script that will check for updates every 30 minutes:

on openScript
 set the icon to "icons/myicon.gif" -- installs custom icon
 set the timer to 30 minutes
end openScript

on timerEvent
 check "http://www.mycompany.com/updates/updates.scp" for updates
end timerEvent

STSTray Documentation (Version 2.0) Page 14 Printed: 10/22/2005 5:30 PM

 STSTray by default installs with no ststray.ini file. Every 30 minutes, STSTray will attempt to download
and open the drop script file at http://www.mycompany.com/updates/updates.scp . Since you haven’t
uploaded the updates.scp file yet (there’s no need to notify the user of anything since they just bought and
installed your product!), nothing happens when the file can’t be found, and it waits another 30 minutes before
checking again.

 Months later, you release an update to your product that you want to notify your users about. So you create an
update file called updates.scp and since you know you’ve never sent out an update notification before, you
can set your scriptID to anything and it will be considered “newer” by STSTray. So you create a script like this
and uploaded it to your web server at http://www.mycompany.com/updates/updates.scp :

on openScript
 set the scriptID to 1000
 show info balloon "A new version of MyProduct is available. Click here to see
what's new." titled "New Version of MyProduct”
end openScript

on balloonClick
 -- Go to a web page that gives information on the new version
 goURL "http://www.mycompany.com/products/MyProductV2.htm"
end balloonClick

on altShowBalloon
 flash icon
 install handler:
 on clickOneTime
 stop flashing
 answer info "A new version of MyProduct is available. Would you like
to see what's new?" with "YesNo" titled "New version of MyProduct"
 switch result
 case "Yes"
 goURL "http://www.mycompany.com/products/MyProductV2.htm"
 end switch
 end clickOneTime
end altShowBalloon

 The next time STSTray on the user’s machine checks for updates, it will see the file is there, download it, get
the scriptID (1000) and check it against what it previously had stored (nothing). It is obviously new, so it sets
it stored ID to 1000, creating the ststray.ini file (since there wasn’t one there before) and setting the
LastID key in the INI file to 1000, and loads the script. It executes the show balloon command, which will
display the balloon on Windows XP or greater – if they click on the balloon, it will take them to the web page
with more information about the product update. If they don’t have Windows XP or greater, the on
altShowBalloon handler will kick in and it will flash the icon in the tray, and install a one-time handler that
will activate when the user clicks the icon with their mouse. When they click, it will execute the commands in
the installed on clickOneTime handler, and will bring up an answer dialog box, letting them know a new
version of your product is available. If they click “Yes”, they will be taken to the web page with more
information on the product update. If they click “No”, the dialog box goes away. In either case, STSTray will
go back to checking for updates every 30 minutes.

Example 2:
 This is the same as Example 1, but instead of an automated check, you have added a “Check for Updates” item

in your menu item so that they can check manually. In this case, you want to let them know whether or not an
update is available. So you could do this:

on itemselect
 case "Check for Updates"

 check "http://www.mycompany.com/updates/updates.scp" for updates

STSTray Documentation (Version 2.0) Page 15 Printed: 10/22/2005 5:30 PM

switch result
 case "same"
 answer "You are using the current version of MyApp."
 case "different"
 do nothing
end switch

end itemselect

 Note: The reason that nothing is executed in the “different” case is because the check for updates command
would have downloaded a drop script that executed and taken whatever action(s) were required. In actuality,
most people won’t use the “different” case for this reason, but will take advantage of the “same” case.

See also
 set timer, on timerEvent [handler], getURL, download, do nothing

create menu
Summary

This command creates a custom menu that will be displayed when the popup menu command is executed.

Syntax
 create menu "item1,item2,…,itemN"

Arguments
item1 … itemN These are the names of menu items to display in the menu, enclosed in quotes. The

order they are displayed is from top-to-bottom (i.e. item1 is at the top of the menu,
and itemN is at the bottom).

You can insert a separator line by making one of the items a hyphen (“-”).

You can make a menu item disabled by preceding it with an open parenthesis (“(“)

Note that the entire list of menu items is quoted; do not enclose each menu item in
quotes, or you will only see the first one.

Description
This command will install a menu into the system tray icon that you can display using the popup menu
command.

When a menu item is selected, STSTray looks for an on itemSelect handler in the Active Handlers for the
selected menu item. If it finds one, it executes the commands inside that item’s case section of the script (see
on itemSelect under Handlers for more info).

If it does not find a corresponding on itemSelect handler for the selected menu item, the name of the menu
item is written to the output file (see The “Output File” for information on output files).

Any menu item named “Quit” or “Exit” will automatically be handled by STSTray, and will cause STSTray to
quit and remove itself from the system tray, if it is not trapped by a case in on itemselect .

Note that this command will replace any previously installed menu with the menu being created; this is a good
way to create dynamic menus.

Example

 This script creates a menu with three items. Selecting “Greeting” causes a message box to appear with a
greeting, selecting “Exit” will close STSTray.

STSTray Documentation (Version 2.0) Page 16 Printed: 10/22/2005 5:30 PM

on openScript
 create menu "Greeting,-,Exit"
end openScript

on itemSelect
 case "Greeting"
 answer information "Hello there!" with "OK" titled "Greeting"
end itemSelect

See also
 popup menu, set outputFile, on ite mSelect [Handler]

delete file
Summary
 This command deletes a local file.

Syntax
 delete [file] filePath

Arguments
filePath This is the path to the file that is to be deleted, enclosed in quotes. (See File Paths for

file path specification options.)

Example
 The following example deletes the file deleteme.txt that is located at the root level of the C:\ drive when the

script file is opened:

on openScript
 delete file "c:\deleteme.txt"
end openScript

See also
 write, set output

do nothing
Summary

 This command does absolutely nothing, and is usually used by those who wish to show all cases in an answer
or check for updates command. You can also use the simple string nothing instead of do nothing if you
prefer.

Syntax
 do nothing

Arguments
none

Example

 The following example shows how this might be used

STSTray Documentation (Version 2.0) Page 17 Printed: 10/22/2005 5:30 PM

on openScript
 answer "Are you sure you want to launch Notepad?" with "YesNo"
 switch result
 case "Yes"
 launch "C:\WINDOWS\NOTEPAD.EXE"
 case "No"
 do nothing
 end switch
end openScript

See also
 answer

download
Summary
 This command downloads a specified file from a web server to the local drive. Note that commands that follow

this command will not be executed until the download has been completed.

Syntax
 download url [to filePath]

Arguments
url The absolute URL of the file you wish to download.

filePath Optional. This is the path to the place where the file is to be retrieved, enclosed in
quotes, and including the name of the file after it has been retrieved. (See File Paths
for file path specification options.)

If you do not provide a filePath, the file at url will be downloaded to the STSTray
folder, and will be named the same as it was on the web server.

Example 1:
 This example downloads a file at http://www.mycompany.com/testfile.htm to the STSTray directory

(depositing a file called testfile.htm in that directory) when the user double-clicks on the tray icon:

on doubleClick
 download "http://www.mycompany.com/testfile.htm"
end doubleClick

Example 2:

 This is the same as Example 1, but downloads the file to the C: drive and changing its name to newfile.htm :

on doubleClick
 download "http://www.mycompany.com/testfile.htm" to "C:\newfile.htm"
end doubleClick

See also
 goURL, check for updates

STSTray Documentation (Version 2.0) Page 18 Printed: 10/22/2005 5:30 PM

flash icon
Summary
 This command causes an icon to be loaded and flash in the tray.

Syntax
 flash icon [iconPath] [every num [milliseconds|ms]]

Arguments
iconPath Optional. This is the path to the icon, enclosed in quotes. (See File Paths for file path

specification options.)

The “icon” can be a GIF, JPEG, BMP or ICO file, and if it is larger than 16x16 it is
automatically scaled to fit.

If no icon is specified, executing this command will cause the currently loaded icon in
the system tray to flash.

num Optional. The number of milliseconds between flashes; defaults to 500 milliseconds if
not specified. If specified, must be an integer between 1 and 65535.

Description
Calling this command will load and flash the icon specified in iconPath every num milliseconds. It will replace
the currently displayed icon (if there is one).

Example
 The following example flashes the icon myicon.jpg that resides in the subfolder icons every 750

milliseconds:

on openScript
 flash icon "icons/myicon.jpg" every 750 ms
end openScript

See also

 set icon, swap icon, show balloon, stop flashing, stop swapping

goURL
Summary

 This command executes an internet URL.

Syntax
 goURL url

Arguments
url The absolute URL that you wish to execute.

Description
This command can be used to open or go to the user’s web browser and navigate to a web site (with an “http”
URL), create a new mail message using the user’s local email client (with a “mailto:” URL), or any other type
of URL that you could execute in a web browser.

Example

STSTray Documentation (Version 2.0) Page 19 Printed: 10/22/2005 5:30 PM

 The following example goes to a web page on a web site when the user picks the right menu item from the
popup menu that is displayed.:

on itemSelect
 case "Go to My Home Page"
 goURL "http://www.mycompany.com/products/"
end openScript

See also
 download, check for updates

install handler
Summary
 This command installs a new handler on demand.

Syntax
 There are two forms of syntax for this command:

 install [handler] handlerText

 install [handler]:
 handler

Arguments
handlerText This is the text of the handler as a quoted string that uses \n for new lines and \' for

embedded quotation marks (see Special Characters, above). The handlerText needs to
resolve to a real handler (see the examples).

handler This is a non-quoted handler that is multiple lines and appears like a normal handler
would; it’s just that it is within another handler (see the examples).

Description
 This command provides the ability to install a new handler on the fly, as if that handler were in a drop script

that STSTray had processed. It can be very useful to install a new handler (especially a one-time handler) based
on a menu selection (see on itemSelect) or button selection in an alert dialog (see answer), or as the result of
checking for updates (see check for updates).

 Note that if using the second form (the more expanded and readable form), you need to make sure you end the
install handler command with a colon (“:”) otherwise STSTray won’t know that the next lines are a
handler, and it will try to process them as commands and generate script errors.

Example 1:
 This example replaces the existing leftClick handler with a new one based on a menu selection:

on itemSelect
 case "Replace leftClick"
 install handler "on leftClick\nanswer \'Hello\'\nend leftClick"
end itemSelect

 After the menu item has been chosen, clicking on the icon in the tray will display an alert box that says “Hello”.

Example 2:

 This is the same example, but using the expanded (more readable) form:

on itemSelect

STSTray Documentation (Version 2.0) Page 20 Printed: 10/22/2005 5:30 PM

 case "Replace leftClick"
 install:
 on leftClick
 answer "Hello"
 end leftClick
end itemSelect

 Please see the Example in the check for updates entry for another example of how this command can be
used.

See also

 answer, on itemSelect [Handler], check for updates

launch
Summary

 This command launches an application or document, optionally with additional parameters

Syntax
 launch filePath [with parameters]

Arguments
filePath This is the path to the application or document, enclosed in quotes. (See File Paths for

file path specification options.)

parameters This is any parameters that the application needs, enclosed in quotes . (See File Paths
for file path specification options.)

Example 1:

 This script launches the Notepad application, or a Word document:

on openScript
 create menu "Open Notepad,Open Word Doc,-,Quit "
end openScript

on itemSelect
 case "Open Notepad"
 launch "c:\windows\notepad.exe"
 case "Open Word Doc"
 launch "c:\myDocument.doc"
end itemSelect

Example 2:
 This script launches a specific Notepad document using parameters:

on openScript
 create menu "Open Notepad File,-,Quit "
end openScript

on itemSelect
 case "Open Notepad File"
 launch "c:\windows\notepad.exe" with "c:\myfile.txt”
end itemSelect

STSTray Documentation (Version 2.0) Page 21 Printed: 10/22/2005 5:30 PM

popup menu
Summary
 This command pops up the menu created with create menu.

Syntax
 popup menu

Arguments
 none

Description

Normally, a menu created with create menu will pop up automatically whenever the user right-clicks on the
tray icon. You might wish to pop the menu up at other occasions; for example, when the user left-clicks, or
double-clicks on the tray icon.

popup menu will not work if a menu has not previously been created with create menu .

Example:

 Here is an example of popping up the menu when the left mouse button is clicked (as well as the default right-
mouse button):

on click
 popup menu
end click

See also
 create menu, on itemSelect [Handler]

quit
Summary
 This command quits STSTray and removes its icon from the system tray.

Syntax
 quit

Arguments
 none

Description
There are a number of built-in ways to quit STSTray without having to use the quit command (see Quitting
STSTray for a list of these approaches), and most of the time will not need to be used. However, in certain
instances it can be useful (see the example below).

Note that exit can be used in place of quit.

Example
 This script sets a custom Quit menu item:

on openScript
 create menu "Greetings,Howdy,-,Quit MyApp"

STSTray Documentation (Version 2.0) Page 22 Printed: 10/22/2005 5:30 PM

end openScript

on itemSelect
 case "Quit MyApp"
 quit
end itemSelect

set icon
Summary
 This command sets the icon to be used in the system tray.

Syntax
 set [the] icon to iconPath

Arguments
iconPath This is the path to the icon, enclosed in quotes. (See File Paths for file path

specification options.)

The “icon” can be a GIF, JPEG, BMP or ICO file, and if it is larger than 16x16 it is
automatically scaled to fit.

Description
Calling this command will change the icon in the tray from what is currently being displayed to the icon
provided in iconPath. If the icon is currently flashing (see the flash icon command), it will be replaced by the
icon in iconPath and the flashing will continue. If the icon is currently being swapped (see the swap icon
command), the icon provided in iconPath will replace the “main” icon, and not the “swap” icon (see the entry
on the swap icon command for more information), and the swapping will continue with the new icon.

Example

 The following example changes the existing icon to the icon myicon.gif in the subfolder icons:

on openScript
 set the icon to "icons/myicon.gif"
end openScript

See also

 flash icon, swap icon

set outputFile
Summary

 This command defines the location of the output file.

Syntax
 set [the] outputFile to filePath

Arguments
filePath This is the path to the output file, enclosed in quotes. (See File Paths for file path

specification options.)

STSTray Documentation (Version 2.0) Page 23 Printed: 10/22/2005 5:30 PM

Description
Normally, commands like answer and selected menu items without scripts will output their selections to a file
called output.txt located in the same directory as the STSTray application (see The “Output File” for more
information). You can change this location using the set outputFile command so you can direct output to
wherever you need it.

Example
 This script outputs the selected menu item to a user-defined output file:

on openScript
 set outputFile to "myoutput/menuselections.txt"
 create menu "Greetings,Hello,Salutations,-,Exit"
end openScript

See also

 answer, write

set polling
Summary

 This command sets the frequency that STSTray looks for drop scripts.

Syntax
 Set [the] polling to num [{milliseconds|ms}]

Arguments
num The number of milliseconds between each polling attempt. Normally STSTray polls

for drop scripts every 500 milliseconds; this overrides the default polling interval.
Must be an integer between 0 and 65535; if set to 0, STSTray will never look for drop
scripts.

Descrip tion
Depending on your needs, you may wish to set the polling to higher than the default. This will reduce the
CPU activity on the user’s computer, and will help to prevent interference with things that require a lot of
performance (such as video playback).

You may turn off polling completely by setting the polling to 0, but that means that STSTray will no longer
look for drop scripts. The only way to restore the polling capability is to change the polling value via a menu
item, or via a reboot (unless you set the polling to 0 in the on openScript handler in the boot script), or via
a script file that is retrieved with check for updates (which is processed regardless of the polling setting, as
long as it is newer (see check for updates for more information)).

Example
 The following example turns off polling when STSTray launches, but allows it to be reset to the default when

the proper menu item is selected:

on openScript
 set the polling to 0
 create menu "Reset Polling,-,Exit"
end openScript

on itemSelect

STSTray Documentation (Version 2.0) Page 24 Printed: 10/22/2005 5:30 PM

 case "Reset Polling"
 set the polling to 500
end itemSelect

See also

 set timer

set scriptID
Summary

Defines a unique identifier for a drop script file, used by check for updates to see if the drop script needs to
be processed.

Syntax
 set [the] scriptID to value

Arguments
value Any string or numeric value.

Description
This command sets a unique identifier for a particular script. It is used only by the check for updates
command; for more information and an example of how it is used, refer to the check for updates command.

See also
 check for updates

set silentErrors
Summary
 Determines whether errors generated by STSTray are displayed as alert boxes to the screen, or written to an

error log file.

Syntax
 set [the] silentErrors to {true|false}

Arguments
none

Description
Normally, errors that are generated by STSTray are reported by displaying a dialog box on the screen. This can
be a bit embarrassing for end users to see, so there is an option to redirect errors to a log file, o r to handle them
yourself via the on scriptError handler.

When STSTray launches, the silentErrors are automatically set to false; if you set it to true and an error is
generated, STSTray will check to see if there is an on scriptError handler that is loaded in the Active
Handlers. If there is, it will trigger that handler and execute whatever commands are inside that handler. If not,
errors will be written to a file called errors.log, which is in the same directory as the STSTray executable. If
the file already exists it will be appended to; if it does not exist, it will be created.

Example

STSTray Documentation (Version 2.0) Page 25 Printed: 10/22/2005 5:30 PM

 The following example turns off the display of STSTray’s error dialogs, and provides a custom error dialog
instead (using the on scriptError handler).

on openScript
 set the silentErrors to true
end openScript

on scriptError
 answer error "An error was generated performing the last action. Please
 contact MyCompany at 555-1212 and report the error." titled "Error
 Encountered"
end scriptError

See also
 on scriptError [Handler]

set timer
Summary
 This command sets up a countdown timer that will execute the commands in the on timerEvent handler when

the time expires.

Syntax
 set [the] timer {to|for} num [{ms|milliseconds|sec|secs|second|seconds|min|mins

 |minutes|hr|hrs|hours}]

Arguments
num The number of milliseconds, seconds, minutes or hours to set the countdown timer

for. If a timer is already active, setting the timer to 0 will turn off the timer.

Description

This command is used to set up the timer so that you can do timed commands. When the timer interval has
passed, it executes the commands in the on timerEvent handler (if loaded). If for some reason a timer has
been set, but no on timerEvent handler has been loaded, nothing will happen when the timer interval has
passed.

STSTray has only one timer, so if you want to stop and restart the timer, you can execute stop timer or set
the timer to 0 and then set it again to a new value.

Note: One thing to consider when using set timer is that the timer interval starts as soon as the set timer
command is executed. This means that if you set the timer to something like 2 days, and the set timer
command is executed in a boot script, but the user shuts down their computer every night and reboots the next
morning, your timer will never trigger. It is therefore suggested that you keep your timers to 8 hours or less
unless you know the machine is going to stay on for a long time.

Example

 The following is an example that displays an alert box each time an hour has passed:

on openScript
 set the timer to 1 hour
end openScript

on timerEvent
 answer "An hour has passed."

STSTray Documentation (Version 2.0) Page 26 Printed: 10/22/2005 5:30 PM

end timerEvent

 Another example can be seen in the Example section of the check for updates command.

See also
 stop timer, check for updates, on timerEvent [Handler]

set tooltip
Summary
 This command defines the tooltip to be displayed when the mouse passes over the icon in the tray.

Syntax
 set [the] tooltip to text

Arguments
text The text of the tooltip, enclosed in quotes. Special characters are substituted (see

Special Characters, above).

Note: If the target machine is running Shell 5 (that is, Internet Explorer 5) or higher,
the maximum number of characters that can be displayed is 127. If the target machine
is running a Shell that is less than 5 (Internet Explorer 4 for example), the maximum
number of characters that can be displayed is 63. If you supply more than the
maximum allowable characters, it will be truncated.

Description

If you do not specify a tooltip, STSTray defaults to showing a tooltip that says “STSTray”.

Example
 This script sets the tooltip to “MyApp – Paused”

on openScript
 set tooltip to "MyApp – Paused"
end openScript

See also
 show balloon

show balloon
Summary
 This command causes a balloon to be displayed under Windows XP or greater.

Syntax
 show [{info[rmation]|warning|error}] balloon with text titled title

Arguments
info[rmation]
warning
error

Optional. These are the icon types that can be displayed next to the title of the
balloon:

STSTray Documentation (Version 2.0) Page 27 Printed: 10/22/2005 5:30 PM

If no icon type is defined, the “information” icon is used by default.

text The text message that should be displayed when the balloon is displayed, enclosed in
quotes. Special characters are substituted (see Special Characters, above).

Note: If the target machine is running Shell 5 (that is, Internet Explorer 5) or higher,
the maximum number of characters that can be displayed is 255. If the target machine
is running a Shell that is less than 5 (Internet Explorer 4 for example), the maximum
number of characters that can be displayed is 127. If you supply more than the
maximum allowable characters, it will be truncated.

title The title in the balloon to display when the balloon is displayed, enclosed in quotes.
Special characters are substituted (see Special Characters, above).

Note: If the target machine is running Shell 5 or higher, the maximum number of
characters that can be displayed is 127. If the target machine is running a Shell that
is less than 5, the maximum number of characters that can be displayed is 63. If you
supply more than the maximum allowable characters, it will be truncated.

Description
 This command will display a balloon in the system tray based on the parameters provided above. This is the

kind of command that is usually not included in the boot script file that loads when STSTray starts up; it is
generally implemented as a drop script later, when a specific event occurs. It will also generate a balloonShow
message which will execute any commands in the on balloonShow handler (if loaded).

 Note: This command only works under Windows XP or greater; if used under another environment, it will
generate an altShowBalloon message which will execute any commands in the on altShowBalloon handler
(if loaded).

 If the user clicks anywhere on the balloon itself (other than the close box), it will generate a balloonClick
message and execute any commands in the on balloonClick handler (if loaded). If the close box is clicked, it
will generate a balloonClose message and execute any commands in the on balloonClose handler (if
loaded).

Example
 The following example displays the Information balloon shown in the graphic above:

on openScript
 show information balloon with "Isn’t this cool?" titled "STSTray"
end openScript

See also
 flash icon, swap icon, on altShowBalloon [Handler], on balloonClick [Handler], on balloonClose [Handler], on balloonShow

[Handler]

stop flashing
Summary

 This command causes the icon in the tray to stop flashing or swapping, returning it to its original icon. If no
icon is flashing or swapping, it will have no effect. Another form of this command is stop swapping .

STSTray Documentation (Version 2.0) Page 28 Printed: 10/22/2005 5:30 PM

Syntax
 stop flash[ing]

Arguments
none

Example

 To see a good example of this, take a look at the Example in the check for updates command.

See also
 flash icon, swap icon, stop swapping

stop swapping
Summary
 This command causes the icon in the tray to stop flashing or swapping, returning it to its original icon. If no

icon is flashing or swapping, it will have no effect. Another form of this command is stop flashing .

Syntax
 stop swap[ping]

Arguments
none

Example

 To see a good example of this, take a look at the Example in the check for updates command.

See also
 flash icon, swap icon, stop flashing

stop timer
Summary
 This command causes the currently running timer to stop and be reset, allowing you to change the timer settings

using set timer , or just leave it off. Another form of this command is set the timer to 0.

Syntax
 stop timer

Arguments
none

Example

 To see a good example of this, take a look at the boot.scp script that comes with STSTray.

See also
 set timer

STSTray Documentation (Version 2.0) Page 29 Printed: 10/22/2005 5:30 PM

swap icon
Summary

 This command animates two icons (swapping them back and forth) in the system tray.

Syntax
 swap icon[s] mainIconPath {and|with} swapIconPath [every num [milliseconds|ms]]

Arguments
mainIconPath This is the path to the “main” icon, enclosed in quotes. (See File Paths for file path

specification options.)

The “icon” can be a GIF, JPEG, BMP or ICO file, and if it is larger than 16x16 it is
automatically scaled to fit .

swapIconPath This is the path to the “swap” icon, enclosed in quotes. Same rules as for
mainIconPath apply.

num Optional. The number of milliseconds between swaps; defaults to 500 milliseconds if
not specified. Must be an integer between 1 and 65535.

Description
This command is similar to flash icon , except that instead of one icon blinking, you have two icons that
trade places over and over again. If an icon already exists, it will be replaced.

Example
 This example swaps a mailbox icon (mail1.ico) with another mailbox icon with the flag up (mail2.ico). Both

icons reside in the directory above the STSTray application, using the default interval (500 ms).

on openScript
 swap icons "../mail1.ico" and "../mail2.ico"
end openScript

See also
 set icon, flash icon, show balloon

write
Summary
 This command writes a chunk of text to a user-specified text file, or to the output file if a path is not specified.

Syntax
 write text [to file filePath]

Arguments
text This is the text to write, enclosed in quotes. Special characters are substituted (see

Special Characters, above).

filePath Optional. This is the path to the file where the text should be written, enclosed in
quotes. (See File Paths for file path specification options.)

STSTray Documentation (Version 2.0) Page 30 Printed: 10/22/2005 5:30 PM

Description
The write command can be used to write a user-defined piece of text to a user-defined file. Compare this with
set outputFile, which just redirects “standard” output to a text file. Note that you can use the special
characters %d% and %t% to write the date and time to the file you create. This makes it quite useful for creating
logs of activity.

Example
This script outputs a custom chunk of text based on each selected menu item (see the entry on itemSelect for
more information on how itemSelect works):

on openScript
 create menu "Greetings,Hello,-,Exit"
end openScript

on itemSelect
 case "Greetings"
 -- This goes to the standard output file
 write "Greetings from your friend, Max!"

 case "Hello"
 -- This goes to a specified file path
 write "Hello everyone!" to file "greetings.txt"
end itemSelect

See also
 answer, set outputFile

Handlers

on altShowBalloon
Summary

This handler is executed whenever STSTray is supposed to display a balloon (done via the show balloon
command) but the current operating system is not Windows XP or greater.

Syntax
 on altShowBalloon

 commands
end altShowBalloon

Description
This handler can be used to set up a universal notification approach, regardless of operating system. You can
execute a show balloon command and know that if the user isn’t running Windows XP or greater that it will
generate the altShowBalloon event that can be trapped here, and you can do something else for non-XP
systems.

Example

The following example flashes the icon in the tray, and then when clicked (once only), it stops the flashing of
the icon and brings up an answer dialog box.

on altShowBalloon

STSTray Documentation (Version 2.0) Page 31 Printed: 10/22/2005 5:30 PM

 flash icon
 install handler:
 on clickOneTime
 stop flash
 answer info "A new version of STSTray is available." with "OK" titled
"New Version”
 end clickOneTime
end altShowBalloon

See also
 show balloon

on balloonClick
Summary
 This handler is executed whenever the user clicks on a balloon that was displayed with the show balloon

command, anywhere but on the close box of the balloon.

Syntax
 on balloonClick

 commands
end balloonClick

Description
This is quite frequently used to let the user know that clicking on the balloon will do something like “click the
balloon to go to our web site” or “click the balloon to start the installation”.

Example
 The following handler is used to take the user to a web site when they click on it:

on balloonClick
 goURL "http://www.sonsothunder.com/"
end balloonClick

See also
 show balloon, on balloonClose [handler], on balloonShow [handler]

on balloonClose
Summary
 This handler is executed whenever the user clicks the close box of a balloon displayed with the show balloon

command.

Syntax
 on balloonClose

 commands
end balloonClose

Description

STSTray Documentation (Version 2.0) Page 32 Printed: 10/22/2005 5:30 PM

This is very infrequently used (most of the time you don’t care if the balloon is closed or not), but you might
want to take some clean-up action if the user chooses to not acknowledge the balloon alert by clicking on it.

Example
 Here’s an example that assumes that a file was downloaded containing some “read me” information that would

be displayed if the user clicked on the balloon (the message said “Click here to read what is new in 2.0.”).
Clicking the close box deletes the file (since the user doesn’t want to see it right now).

on balloonClose
 delete file "20ReadMe.txt"
end balloonClose

See also

 show balloon, on balloonClick [handler], on balloonShow [handler]

on balloonShow
Summary

 This handler is executed whenever the balloon is displayed with the show balloon command.

Syntax
 on balloonShow

 commands
end balloonShow

Description
You may wish to take certain actions when the balloon is shown; this handler will allow you to do that.

Example

 Here’s an example of handler that writes a log file noting that the balloon was seen and when it was seen.

on balloonShow
 write "Balloon was displayed at %d% %t%." to file "balloonlog.txt"
end balloonShow

See also

 show balloon, on balloonClick [handler], on balloonClose [handler]

on doubleLeftClick (on doubleClick)
Summary

 This handler is executed whenever the user double-clicks the icon in the system tray with the left mouse button.

Syntax
 on doubleLeftClick

 commands
end doubleLeftClick

 on doubleClick
 commands
end doubleClick

STSTray Documentation (Version 2.0) Page 33 Printed: 10/22/2005 5:30 PM

Example
 This is an example where double-clicking the icon with the left mouse button will bring up an answer dialog:

on doubleClick
 answer "You double-clicked me."
end doubleClick

See also
 on leftClick [handler], on leftClickOneTime [handler], on doubleLeftClickOneTime [handler], on rightClick [handler], on

rightClickOneTime [handler], on doubleRightClick [handler], on doubleRightClickOneTime [handler]

on doubleLeftClickOneTime (on doubleClickOneTime)
Summary

 This handler is executed the first time a user double-clicks the icon in the system tray with the left mouse
button.

Syntax
 on doubleLeftClickOneTime

 commands
end doubleLeftClickOneTime

 on doubleClickOneTime
 commands
end doubleClickOneTime

Description

The first time the user double-clicks the icon in the system tray, this code will execute. The second and
subsequent times the user double-clicks the icon, the on doubleLeftClick handler will be executed. Note that
you can “reinstall” a one-time handler by adding it again in via another drop script file.

Example
 The following example displays a dialog box only the first time the icon is double-clicked:

on doubleLeftClickOneTime
 answer "You double-clicked me! But you won't see this again..."
end doubleLeftClickOneTime

See also
 on leftClick [handler], on leftClickOneTime [handler], on doubleLeftClick [handler], on rightClick [handler], on

rightClickOneTime [handler], on doubleRightClick [handler], on doubleRightClickOneTime [handler]

on doubleRightClick
Summary

 This handler is executed whenever the user double-clicks the icon in the system tray with the right mouse
button.

Syntax

STSTray Documentation (Version 2.0) Page 34 Printed: 10/22/2005 5:30 PM

 on doubleRightClick
 commands
end doubleRightClick

Example

 This is an example where double-clicking the icon with the right mouse button will write text to the output file:

on doubleRightClick
 write "I was double-clicked."
end doubleRightClick

See also

 on leftClick [handler], on leftClickOneTime [handler], on doubleLeftClick [handler], on doubleLeftClickOneTime [handler], on
rightClick [handler], on rightClickOneTime [handler], on doubleRightClickOneTime [handler]

on doubleRightClickOneTime
Summary
 This handler is executed the first time a user double-clicks the icon in the system tray with the right mouse

button.

Syntax
 on doubleRightClickOneTime

 commands
end doubleRightClickOneTime

Description

The first time the user double-clicks the icon in the system tray with the right mouse button, this code will
execute. The second and subsequent times the user double-clicks the icon, the on doubleRightClick handler
will be executed. Note that you can “reinstall” a one-time handler by adding it again via another drop script file.

Example
 The following example displays a dialog box only the first time the icon is double-clicked with the right mouse

button:

on doubleRightClickOneTime
 answer "You double-clicked me! But you won't see this again..."
end doubleRightClickOneTime

See also
 on leftClick [handler], on leftClickOneTime [handler], on doubleLeftClick [handler], on doubleLeftClickOneTime [handler], on

rightClick [handler], on rightClickOneTime [handler], on doubleRightClick [handler]

on itemSelect
Summary

 This handler is executed whenever the user selects a menu item from a menu created using the create menu
command.

Syntax

STSTray Documentation (Version 2.0) Page 35 Printed: 10/22/2005 5:30 PM

 on itemSelect
 case item1Name
 commands
 case item2Name
 commands
 :
 case itemNName
 commands
end itemSelect

Arguments
item1Name…itemNName The name of the menu item to match, enclosed in quotes.

commands The list of commands to execute when this menu item is selected.

Description
When the user selects a menu item from a menu created using the create menu command, the on
itemSelect handler is automatically triggered and a check is made to see if the menu item’s name matches an
existing case statement inside the on itemSelect handler. If it does, it executes the commands beneath it. If it
does not match, STSTray takes the default action, which is to write the name of the selected menu item out to
the output file.

Example

This is an example of a menu defined in the on openScript handler triggers selected items in the on
itemSelect handler:

on openScript
 create menu "Greetings,Hello,Remove This Menu Item,-,Exit"
end openScript

on itemSelect
 case "Greetings"
 -- This sends the word "Greetings" to the standard output file
 -- since no commands are defined

 case "Hello"
 write "Hello everyone!" to file "greetings.txt"

 case "Remove This Menu Item"
 -- This redefines the menu with a new call to 'create menu',
 -- effectively removing this menu item
 create menu "Greetings,Hello,-,Exit"
end itemSelect

See also

 create menu, popup menu

on leftClick (on click)
Summary

 This handler is executed whenever the user clicks the icon in the system tray with the left mouse button.

Syntax

STSTray Documentation (Version 2.0) Page 36 Printed: 10/22/2005 5:30 PM

 on leftClick
 commands
end leftClick

 on click
 commands
end click

Description
If not defined, the STSTray application will quit when clicked on with the left mouse button under certain
circumstances (see Quitting STSTray for more information). You can, however, have STSTray take custom
actions based on the click.

Example
 This is an example where clicking the icon with the left mouse button will cause the icon to flash:

on click
 flash icon "icons/myicon.jpg" every 750 ms
end click

See also
 on leftClickOneTime [handler], on doubleLeftClick [handler], on doubleLeftClickOneTime [handler], on rightClick [handler],

on rightClickOneTime [handler], on doubleRightClick [handler], on doubleRightClickOneTime [handler]

on leftClickOneTime (on clickOneTime)
Summary

 This handler is executed the first time a user clicks the icon in the system tray with the left mouse button.

Syntax
 on leftClickOneTime

 commands
end leftClickOneTime

Description
The first time the user clicks the icon in the system tray with the left mouse button, this code will execute. The
second and subsequent times the user clicks the icon, the on leftClick handler will be executed. Note that
you can “reinstall” a one-time handler by adding it again in via another drop script file.

Example

 The following example displays a dialog box only the first time the icon is clicked with the left mouse button:

on leftClickOneTime
 answer "You clicked me! But you won't see this again..."
end leftClickOneTime

See also

 on leftClick [handler], on doubleLeftClick [handler], on doubleLeftClickOneTime [handler], on rightClick [handler], on
rightClickOneTime [handler], on doubleRightClick [handler], on doubleRightClickOneTime [handler]

STSTray Documentation (Version 2.0) Page 37 Printed: 10/22/2005 5:30 PM

on openScript
Summary
 This handler is executed whenever STSTray reads a boot script or drop script file that contains this handler.

Syntax
 on openScript

 commands
end openScript

Description
This handler is used to tell STSTray to do something. STSTray reads the boot script file on launch, and then
drop scripts subsequently thereafter during its polling mode. This is the main conduit for communicating to
STSTray from the outside world.

This handler is generally used on launch of STSTray for setting up menus, defining icons, etc. It is then usually
used in subsequent communications for flashing icons, showing balloons, or displaying message dialogs.

Example
 This is a basic, simple script:

on openScript
 set the icon to "myicons/myapp.ico"
 set the tooltip to "MyApp"
end openScript

on rightClick
Summary

 This handler is executed whenever the user clicks the icon in the system tray with the right mouse button.

Syntax
 on rightClick

 commands
end rightClick

Description
If a menu has been defined for the icon using create menu, the menu will popup automatically when the
mouse goes down on the icon using the right mouse button. You can define what happens when the right mouse
button goes up using this handler.

Example

 This is an example where clicking the icon with the right mouse button will start an animation of swapping
icons:

on rightClick
 swap icons "../mail1.ico" and "../mail2.ico"
end rightClick

See also
 on leftClick [handler], on leftClickOneTime [handler], on doubleLeftClick [handler], on doubleLeftClickOneTime [handler], on

rightClickOneTime [handler], on doubleRightClick [handler], on doubleRightClickOneTime [handler]

STSTray Documentation (Version 2.0) Page 38 Printed: 10/22/2005 5:30 PM

on rightClickOneTime
Summary
 This handler is executed the first time a user clicks the icon in the system tray with the right mouse button.

Syntax
 on rightClickOneTime

 commands
end rightClickOneTime

Description

The first time the user clicks the icon in the system tray with the right mouse button, this code will execute. The
second and subsequent times the user clicks the icon, the on rightClick handler will be executed. Note that
you can “reinstall” a one-time handler by adding it again via another drop script file.

Example
 The following example displays a dialog box only the first time the icon is clicked with the right mouse button:

on rightClickOneTime
 answer "You clicked me! But you won't see this again..."
end rightClickOneTime

See also
 on leftClick [handler], on leftClickOneTime [handler], on doubleLeftClick [handler], on doubleLeftClickOneTime [handler], on

rightClick [handler], on doubleRightClick [handler], on doubleRightClickOneTime [handler]

on scriptError
Summary

This handler provides a means of trapping script errors and taking action based on this, but only if the
silentErrors has been set to true (see set silentErrors).

Syntax
 on scriptError

 commands
end scriptError

Description
Normally, errors that are generated by STSTray are reported by displaying a dialog box on the screen. This can
be a bit embarrassing for end users to see, so there is an option to redirect errors to a log file, or to handle them
yourself with this handler.

When STSTray launches, the silentErrors are automatically set to false; if you set it to true and an error is
generated, STSTray will check to see if there is an on scriptError handler that is loaded. If there is, it will
trigger that handler and execute whatever commands are inside that handler. If not, errors will either be written
to a file called errors.log , which is in the same directory as the STSTray executable. If the file already exists
it will be appended to; if it does not exist, it will be created.

Example
 The following example turns off the display of STSTray’s error dialogs, and provides a custom error dialog

instead:

STSTray Documentation (Version 2.0) Page 39 Printed: 10/22/2005 5:30 PM

on openScript
 set the silentErrors to true
end openScript

on scriptError
 answer error "An error was generated performing the last action. Please
 contact MyCompany at 555-1212 and report the error." titled "Error
 Encountered"
end scriptError

See also
 set silentErrors

on timerEvent
Summary

This handler holds a series of commands that will execute each time the timer that has been set with set timer
expires.

Syntax
 on timerEvent

 commands
end timerEvent

Description
One common method for using this handler is to execute the check for updates command, but it can be used
for other things as well (reminders, etc.).

Note that STSTray has only one timer (see comments in the Description section of the set timer command).

Example

 The following is an example that displays an alert box each time an hour has passed:

on openScript
 set the timer to 1 hour
end openScript

on timerEvent
 answer "An hour has passed."
end timerEvent

 Another example can be seen in the Example section of the check for updates command.

See also

 check for updates, set timer

STSTray Documentation (Version 2.0) Page 40 Printed: 10/22/2005 5:30 PM

Examples

Reminder Application
The following example asks you to imagine a fictitious application called “Reminder”, that is a standalone
executable with a simple interface that lets you schedule events, and then will alert the user when an event occurs by
using the balloon in the system tray (for Windows XP or greater) or a flashing icon followed by an answer box when
the icon is clicked (for Windows 95/98/ME/2000).

The idea is that the tray icon will open the user interface of the Reminders application, and allow the user to set up a
reminder.

During installation, the STSTray executable is installed in the same directory as the Reminders program, along with
an icon for the tray called Reminder.gif , and a shortcut to STSTray is installed in the Startup folder. The boot
script looks like this:

on openScript
 set the icon to "Reminder.gif"
 set the tooltip to "Reminders"
 create menu "Setup Reminders...,-,Exit"
end openScript

on itemSelect
 case "Setup Reminders..."
 launch "Reminder.exe"
end itemSelect

The user activates the Reminder application by choosing “Setup Reminders” from the icon in the system tray in
order to set up a doctor’s appointment. In the interface, the user sets up a reminder to go off tomorrow at 11:00 am,
with a title that says: “Doctor’s appointment at 11:00”, and text that says “Don’t forget to bring your insurance
card.” The user is done setting the appointment, and clicks the “Quit” button, and then goes about his/her work.

The Reminders application hides its UI but remains running in the background. Since the program is already
running, if the user selected “Setup Reminders” it would launch another instance of the Reminders program, so it
needs to change the behavior of that menu item. As it goes into the background, it executes this code:

MetaTalk/Transcript

on ChangeTrayMenu
put format("on openScript\ninstall handler:\non itemSelect\ncase "Setup
Reminders..."\nwrite \"DoSetup\" to file \"Reminder.cmd\"\nend itemSelect\nend
openScript") into tScript

put tScript into url("file:newmenu.scp")
end ChangeTrayMenu

Visual Basic

Private Sub ChangeTrayMenu
tScript = "on openScript" & vbCrLf & "install hander: " & vbCrLf & "on itemSelect"
& vbCrLf & "case " & q("Setup Reminders...") & vbCrLf & "write " & q("DoSetup") &
" to file " & q("Reminder.cmd") & vbCrLf & "end itemSelect" & vbCrLf & "end
openScript"

 Open (App.Path & "\newmenu.scp") for Output as #1
 Print #1,tScript
 Close #1
end Sub

STSTray Documentation (Version 2.0) Page 41 Printed: 10/22/2005 5:30 PM

Private Function q(ByVal strData as String)
 q = Chr(34) & strData & Chr(34)
End Function

This will create a drop script file called newmenu.scp, which contains the following contents (white space has been
added for clarity):

on openScript
 install handler:
 on itemSelect
 write "DoSetup" to file "Reminder.cmd"
 end itemSelect
end openScript

When STSTray sees this file, it will open it, and install a replacement on itemSelect handler that will write the
word “DoSetup” to a file called Reminder.cmd instead of launching the Reminders application. To the user, the
menu item has not changed.

The Reminders application then goes into its own polling mode, watching for any file by that name, using this
polling script:

MetaTalk/Transcript

on PollForFile
 if there is a file "Reminder.cmd" then
 put url ("file:Reminder.cmd") into tCommand
 delete file "Reminder.cmd"
 if tCommand is "DoSetup" then
 DisplayInterface -- handler that will show the UI to the user
 end if
 send PollForFile to me in 100 milliseconds
 end if
end PollForFile

Visual Basic

(assumes a Timer object called Timer1 with an Interval of 100.)
Private Sub PollForFile
 Timer1.enabled = true
end Sub

Private Sub Timer1_Timer()
 Dim tCommand As String
 tFile = App.Path & "\Reminder.cmd"
 If FileExists(tFile) Then
 Open tFile For Input As #1
 Line Input #1, tCommand
 Close #1
 Kill tFile
 If tCommand = "DoSetup" then
 DisplayInterface 'subroutine to show the UI to the user
 End if
 End If
End Sub

Private Function FileExists(ByVal tPath As String)
 On Error Resume Next

STSTray Documentation (Version 2.0) Page 42 Printed: 10/22/2005 5:30 PM

 temp = Dir(tPath)
 If Err.Number <> 0 Then
 FileExists = False
 End If
 FileExists = Not (temp = "")
End Function

When the time comes for the doctor’s appointment, the Reminders application calls on the following “generic”
script, passing in the title (“Doctor’s appointment at 11:00”) for the pTitle param, and the text (“Don’t forget to
bring your insurance card.”) in the pText param:

MetaTalk/Transcript

on DoReminder pTitle,pText
put (the reminderScript of me) into tData
replace "TITLEPLACEHOLDER" with q(pTitle) in tData
replace "TEXTPLACEHOLDER" with q(pText) in tData
put tData into url("file:doReminder.scp")

end DoReminder

function q what
return quote & what & quote

end q

The reminderScript custom property contains the following:

on openScript
 show info balloon with TEXTPLACEHOLDER titled TITLEPLACEHOLDER
end openScript

on altShowBalloon
 beep
 flash icon
 install handler:
 on clickOneTime
 stop flash
 answer info TEXTPLACEHOLDER with "OK" titled TITLEPLACEHOLDER
 end clickOneTime
end altShowBalloon

Visual Basic

(assumes a Text object called Text1.)
Private Sub DoReminder(ByVal pTitle as String, ByVal pText as String)
 tData = Text1.text
 tData = Replace(tData,"TITLEPLACEHOLDER",q(pTitle))
 tData = Replace(tData,"TEXTPLACEHOLDER",q(pText))
 Open (App.Path & "\doReminder.scp") for Output as #1
 Print #1,tData
 Close #1
end Sub

Private Function q(ByVal strData as String)
 q = Chr(34) & strData & Chr(34)
End Function

The text field Text1 contains the following:

STSTray Documentation (Version 2.0) Page 43 Printed: 10/22/2005 5:30 PM

on openScript
 show info balloon with TEXTPLACEHOLDER titled TITLEPLACEHOLDER
end openScript

on altShowBalloon
 beep
 flash icon
 install handler:
 on clickOneTime
 stop flash
 answer info TEXTPLACEHOLDER with "OK" titled TITLEPLACEHOLDER
 end clickOneTime
end altShowBalloon

So the Reminders application writes out the following TrayScript file to the drop script file doReminder.scp:

on openScript
 show info balloon with "Don't forget to bring your insurance card." titled
"Doctor’s appointment at 11:00"
end openScript

on altShowBalloon
 beep
 flash icon
 install handler:
 on clickOneTime
 stop flash
 answer info "Don't forget to bring your insurance card." with "OK" titled
"Doctor’s appointment at 11:00"
 end clickOneTime
end altShowBalloon

The reminder is then displayed in one of the following ways (balloon under XP, answer dialog under other systems):

Notifying Users of Product Updates
This example was covered to some degree in the Language Guide above, but is shown here in its completeness for
clarity.

The following example assumes you have a product that you sell or distribute, and you wish to be able to notify
users whenever an update has been made available via STSTray, and you’d like it to check every 4 hours for an
update. For the purposes of this example, the product will be called “Morpheus 1.0”.

To prepare for this, you set up a folder on your web site which STSTray will check at specific intervals. This folder
is located at http://www.mycompany.com/morpheus/updates/, and you leave it empty for right now.

STSTray Documentation (Version 2.0) Page 44 Printed: 10/22/2005 5:30 PM

You then prepare your installer, which installs your product and puts the STSTray folder (which contains the
STSTray executable) in the same directory as your product.

Your installer also puts a shortcut to the STSTray application in the Startup folder (so it will kick in on each restart
of the machine) and your boot.scp file looks like this:

on openScript
 set the icon to "icons/myproduct.gif" -- installs custom icon
 create menu "Check for Updates...,Launch Morpheus,-,Exit"
 check "http://www.mycompany.com/morpheus/updates/updates.scp" for updates
 set the timer to 4 hours
end openScript

on itemSelect
 case "Check For Updates..."
 check "http://www.mycompany.com/morpheus/updates/updates.scp" for updates

 case "Launch Morpheus"
 launch "c:\program files\morpheus\morpheus.exe"
end itemSelect

on timerEvent
 check "http://www.mycompany.com/morpheus/updates/updates.scp" for updates
end timerEvent

The boot script sets the icon, installs a menu allowing the user to do a manual check for updates, immediately
checks for a new update, and then starts a timer that will check for updates every 4 hours.

Since the folder on the web site is currently empty, each time STSTray does a check for updates , it doesn’t find
anything and resets the timer.

Several months later, you have a bug fix update to Morpheus that is version 1.1. You have uploaded the information
on the new update to your web site at http://www.mycompany.com/morpheus/index.htm and that page also
has your downloading instructions, etc. Now all you need to do is notify everyone who has Morpheus 1.0 that there
is an update.

You create a notification file called updates.scp (the name of the file that the check for updates command is
looking for) that contains the following TrayScript:

on openScript
 set the scriptID to 1000
 show info balloon "A new version of Morpheus (version 1.1) is available. Click
 here to see what's new." titled "Morpheus 1.1 is Available"
end openScript

on balloonClick
 -- Go to the Morpheus web page
 goURL "http://www.mycompany.com/morpheus/index.htm"
end balloonClick

STSTray Documentation (Version 2.0) Page 45 Printed: 10/22/2005 5:30 PM

on altShowBalloon
 flash icon
 install handler:
 on clickOneTime
 stop flashing
 answer info "A new version of Morpheus (version 1.1) is available. Would
 you like to see what's new?" with "YesNo" titled " Morpheus 1.1 is
 Available"
 switch result
 case "Yes"
 goURL "http://www.mycompany.com/morpheus/index.htm"
 end switch
 end clickOneTime
end altShowBalloon

Finally, you upload it to http://www.mycompany.com/morpheus/updates/updates.scp, the folder that
STSTray is checking.

When each customer’s copy of STSTray checks for updates, it will see this file there, download it, get the
scriptID (1000) and check it against what it previously had stored (which was nothing since this is the first
update). It is obviously new, so STSTray sets it stored ID to 1000, creating the ststray.ini file (since there
wasn’t one there before) and setting the LastID key in the INI file to 1000, and loads the script. It executes the
show balloon command, which will display the balloon on Windows XP or greater – if they click on the balloon, it
will take them to the web page with more information about the product update. If they don’t have Windows XP or
greater, the on altShowBalloon handler will kick in and it will flash the icon in the tray, and install a one-time
handler that will activate when the user clicks the icon with their mouse. When they click, it will execute the
commands in the installed on clickOneTime handler, and will bring up an answer dialog box, letting them know a
new version of Morpheus is available. If they click “Yes”, they will be taken to the web page with more information
on the product update. If they click “No”, the dialog box goes away. In either case, STSTray will go back to
checking for updates every 4 hours.

As you can see, this is a really easy way to notify users of product updates, or anything else you’d like to bring to
their attention. And if, for some reason, you need to modify the tray menu permanently, or change what happens
when STSTray is launched, you can download a file which deletes the current boot.scp with the delete
command, and then creates a new one with the write command.

