An Introduction to TCP/IP Programming 1

An Introduction to TCP/IP Programming

Introduction

With the acceptance of TCP/IP as a standard platform-independent network protocol,
and the explosive growth of the Internet, the Windows Sockets API (application
program interface) has emerged as the standard for network programming in the
Windows environment. This document will introduce the basic concepts behind
Windows Sockets programming and get you started with your first application
created with SocketWrench. It is assumed that the reader is familiar with Visual
Basic and has installed the SocketWrench Secure Edition control.

Designed for the professional commercial software developer, SocketWrench is
optimized for 32-bit platforms and implements secure protocols with support for up
to 128-bit encryption. This new release includes both ActiveX controls, standard
dynamic link libraries (DLLs) and C++ classes in the same package, along with new
samples and over 400 pages of documentation. For professional developers,
SocketWrench provides all of the features, documentation and technical support
needed to develop complete Internet applications, without the complexities of
learning the Windows Sockets API or working around the limitations of other Internet
controls.

The SocketTools Visual and Library Editions provide a complete collection of controls
and libraries for many of the popular Internet application protocols such as FTP,
POP3, SMTP and HTTP. Secure editions of these components are also available that
support both standard and secure (SSL/TLS) network connections. You'll find the
same features, functionality and stability in the SocketTools package without having
to learn how to implement complex application protocols or decipher cryptic
standards documents. With SocketTools, adding features like file transfer, sending
and retrieving e-mails, and accessing web pages can be done in just a few minutes.
Instead of reinventing the wheel, you can spend your time working on your core
application and increasing your productivity without sacrificing the features that your
users expect.

To learn more about SocketWrench 4.0 and the SocketTools family of products,
please visit the Catalyst Development website at http://www.catalyst.com.

Windows Sockets API

The Windows Sockets specification was created by a group of companies, including
Microsoft, in an effort to standardize the TCP/IP suite of protocols under Windows.
Prior to Windows Sockets, each vendor developed their own proprietary libraries, and
although they all had similar functionality, the differences were significant enough to
cause problems for the software developers that used them. The biggest limitation
was that, upon choosing to develop against a specific vendor's library, the developer
was "locked" into that particular implementation. A program written against one
vendor's product would not work with another's. Windows Sockets was offered as a
solution, leaving developers and their end-users free to choose any vendor's
implementation with the assurance that the product will continue to work.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

http://www.catalyst.com/

An Introduction to TCP/IP Programming 2

There are two general approaches that you can take when creating a program that
uses Windows Sockets. One is to code directly against the API. The other is to use a
component which provides a higher-level interface to the library by setting properties
and responding to events. This can provide a more "natural" programming interface,
and it allows you to avoid much of the error-prone drudgery commonly associated
with sockets programming. By including the control in a project, setting some
properties and responding to events, you can quickly and easily write an Internet-
enabled application. And because of the nature of custom controls in general, the
learning curve is low and experimentation is easy. SocketWrench provides a
comprehensive interface to the Windows Sockets library and will be used to build a
simple client-server application in the next section of this document. Before we get
started with the control, however, we'll cover the basic terminology and concepts
behind sockets programming in general.

Transmission Control Protocol

When two computers wish to exchange information over a network, there are several
components that must be in place before the data can actually be sent and received.
Of course, the physical hardware must exist, which is typically either a network
interface card (NIC) or a serial communications port for dial-up networking
connections. Beyond this physical connection, however, computers also need to use
a protocol which defines the parameters of the communication between them. In
short, a protocol defines the "rules of the road" that each computer must follow so
that all of the systems in the network can exchange data. One of the most popular
protocols in use today is TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the
Internet Protocol (IP). Unlike a single local network, where every system is directly
connected to each other, an internet is a collection of networks, combined into a
single, virtual network. The Internet Protocol provides the means by which any
system on any network can communicate with another as easily as if they were on
the same physical network. Each system, commonly referred to as a host, is
assigned a unique 32-bit number which can be used to identify it over the
internetwork. Typically, this address is broken into four 8-bit numbers separated by
periods. This is called dot-notation, and looks something like "192.43.19.64". Some
parts of the address are used to identify the network that the system is connected
to, and the remainder identifies the system itself. Without going into the minutia of
the Internet addressing scheme, just be aware that there are three "classes" of
addresses, referred to as "A", "B" and "C". The rule of thumb is that class "A"
addresses are assigned to very large networks, class "B" addresses are assigned to
medium sized networks, and class "C" addresses are assigned to smaller networks
(networks with less than approximately 250 hosts).

When a system sends data over the network using the Internet Protocol, it is sent in
discrete units called datagrams, also commonly referred to as packets. A datagram
consists of a header followed by application-defined data. The header contains the
addressing information which is used to deliver the datagram to its destination, much
like an envelope is used to address and contain postal mail. And like postal mail,
there is no guarantee that a datagram will actually arrive at its destination. In fact,
datagrams may be lost, duplicated or delivered out of order during their travels over
the network.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 3

Needless to say, this kind of unreliability can cause a lot of problems for software
developers. What's really needed is a reliable, straightforward way to exchange data
without having to worry about lost packets or jumbled data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top
of IP, TCP offers a reliable, full-duplex byte stream which may be read and written to
in a fashion similar to reading and writing a file. The advantages to this are obvious:
the application programmer doesn’t need to write code to handle dropped or out-of-
order datagrams, and instead can focus on the application itself. And because the
data is presented as a stream of bytes, existing code can be easily adopted and
modified to use TCP.

TCP is known as a connection-oriented protocol. In other words, before two
programs can begin to exchange data they must establish a "connection" with each
other. This is done with a three-way handshake in which both sides exchange
packets and establish the initial packet sequence numbers (the sequence number is
important because, as mentioned above, datagrams can arrive out of order; this
number is used to ensure that data is received in the order that it was sent). When
establishing a connection, one program must assume the role of the client, and the
other the server. The client is responsible for initiating the connection, while the
server’s responsibility is to wait, listen and respond to incoming connections. Once
the connection has been established, both sides may send and receive data until the
connection is closed.

User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of
bytes, nor does it require that you establish a connection with another program in
order to exchange information. Data is exchanged in discrete units called datagrams,
which are similar to IP datagrams. In fact, the only features that UDP offers over raw
IP datagrams are port numbers and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program
sends a UDP datagram over the network, there is no way for it to know that it
actually arrived at its destination. This means that the sender and receiver must
typically implement their own application protocol on top of UDP. Much of the work
that TCP does transparently (such as generating checksums, acknowledging the
receipt of packets, retransmitting lost packets and so on) must be performed by the
application itself.

With the limitations of UDP, you might wonder why it’s used at all. UDP has the
advantage over TCP in two critical areas: speed and packet overhead. Because TCP
is a reliable protocol, it goes through great lengths to insure that data arrives at its
destination intact, and as a result it exchanges a fairly high number of packets over
the network. UDP doesn’t have this overhead, and is considerably faster than TCP. In
those situations where speed is paramount, or the number of packets sent over the
network must be kept to a minimum, UDP is the solution.

Hosthnames

In order for an application to send and receive data with a remote process, it must
have several pieces of information. The first is the IP address of the system that the
remote program is running on.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 4

Although this address is internally represented by a 32-bit number, it is typically
expressed in either dot-notation or by a logical name called a hostname. Like an
address in dot-notation, hostnames are divided into several pieces separated by
periods, called domains. Domains are hierarchical, with the top-level domains
defining the type of organization that network belongs to, with sub-domains further
identifying the specific network.

#"‘7‘713&\‘——_:1“‘“———%
gov com edu net
catalyst
jupiter saturn

In this figure, the top-level domains are "gov" (government agencies), "com"
(commercial organizations), "edu" (educational institutions) and "net" (Internet
service providers). The fully qualified domain name is specified by naming the host
and each parent sub-domain above it, separating them with periods. For example,
the fully qualified domain name for the "jupiter" host would be
"jupiter.catalyst.com". In other words, the system "jupiter" is part of the "catalyst"
domain (a company’s local network) which in turn is part of the "com" domain (a
domain used by all commercial enterprises).

In order to use a hostname instead of a dot-address to identify a specific system or
network, there must be some correlation between the two. This is accomplished by
one of two means: a local host table or a name server. A host table is a text file that
lists the IP address of a host, followed by the names that it's known by. Typically this
file is named hosts and is found in the same directory in which the TCP/IP software
has been installed. A name server, on the other hand, is a system (actually, a
program running on a system) which can be presented with a hostname and will
return that host’s IP address. This approach is advantageous because the host
information for the entire network is maintained in one centralized location, rather
than being scattered about on every host on the network.

Service Ports

In addition to the IP address of the remote system, an application also needs to
know how to address the specific program that it wishes to communicate with. This
is accomplished by specifying a service port, a 16-bit number that uniquely identifies
an application running on the system. Instead of numbers, however, service names
are usually used instead. Like hostnames, service names are usually matched to port
numbers through a local file, commonly called services. This file lists the logical
service name, followed by the port number and protocol used by the server.

A number of standard service names are used by Internet-based applications and
these are referred to as well-known services. These services are defined by a
standards document and include common application protocols such as FTP, POP3,
SMTP and HTTP.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 5

Remember that a service name or port number is a way to address an application
running on a remote host. Because a particular service name is used, it doesn't
guarantee that the service is available, just as dialing a telephone number doesn’t
guarantee that there is someone at home to answer the call.

Sockets

The previous sections described what information a program needs to communicate
over a TCP/IP network. The next step is for the program to create what is called a
socket, a communications end-point that can be likened to a telephone. However,
creating a socket by itself doesn't let you exchange information, just like having a
telephone in your house doesn’t mean that you can talk to someone by simply taking
it off the hook. You need to establish a connection with the other program, just as
you need to dial a telephone number, and to do this you need the socket address of
the application that you want to connect to. This address consists of three key parts:
the protocol family, Internet Protocol (IP) address and the service port number.

We've already talked about the IP address and service port, but what'’s the protocol
family? It's a number which is used to logically designate the group that a given
protocol belongs to. Since the socket interface is general enough to be used with
several different protocols, the protocol family tells the underlying network software
which protocol is being used by the socket. In our case, the Internet Protocol family
will always be used when creating sockets. With the protocol family, IP address of
the system and the service port number for the program that you want to exchange
data with, you're ready to establish a connection.

Client-Server Applications

Programs written to use TCP are developed using the client-server model. As
mentioned previously, when two programs wish to use TCP to exchange data, one of
the programs must assume the role of the client, while the other must assume the
role of the server. The client application initiates what is called an active open. It
creates a socket and actively attempts to connect to a server program. On the other
hand, the server application creates a socket and passively listens for incoming
connections from clients, performing what is called a passive open. When the client
initiates a connection, the server is notified that some process is attempting to
connect with it. By accepting the connection, the server completes what is called a
virtual circuit, a logical communications pathway between the two programs. It's
important to note that the act of accepting a connection creates a new socket; the
original socket remains unchanged so that it can continue to be used to listen for
additional connections. When the server no longer wishes to listen for connections, it
closes the original passive socket.

To review, there are five significant steps that a program which uses TCP must take
to establish and complete a connection. The server side would follow these steps:

Create a socket.

Listen for incoming connections from clients.

Accept the client connection.

Send and receive information.

Close the socket when finished, terminating the conversation.

uhwhe

In the case of the client, these steps are followed:

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 6

Create a socket.

Specify the address and service port of the server program.
Establish the connection with the server.

Send and receive information.

Close the socket when finished, terminating the conversation.

uhwhe

Only steps two and three are different, depending on if it's a client or server
application.

Blocking vs. Non-Blocking Sockets

One of the first issues that you’ll encounter when developing your Windows Sockets
applications is the difference between blocking and non-blocking sockets. Whenever
you perform some operation on a socket, it may not be able to complete immediately
and return control back to your program. For example, a read on a socket cannot
complete until some data has been sent by the remote host. If there is no data
waiting to be read, one of two things can happen: the function can wait until some
data has been written on the socket, or it can return immediately with an error that
indicates that there is no data to be read.

The first case is called a blocking socket. In other words, the program is "blocked"
until the request for data has been satisfied. When the remote system does write
some data on the socket, the read operation will complete and execution of the
program will resume. The second case is called a non-blocking socket, and requires
that the application recognize the error condition and handle the situation
appropriately. Programs that use non-blocking sockets typically use one of two
methods when sending and receiving data. The first method, called polling, is when
the program periodically attempts to read or write data from the socket (typically
using a timer). The second, and preferred method, is to use what is called
asynchronous notification. This means that the program is notified whenever a
socket event takes place, and in turn can respond to that event. For example, if the
remote program writes some data to the socket, a "read event" is generated so that
program knows it can read the data from the socket at that point.

For historical reasons, the default behavior is for socket functions to "block" and not
return until the operation has completed. However, blocking sockets in Windows can
introduce some special problems. The blocking function will enter what is called a
"message loop" where it continues to process messages sent to it by Windows and
other applications. Since messages are being processed, this means that the
program can be re-entered at a different point with the blocked operation parked on
the program's stack. For example, consider a program that attempts to read some
data from the socket when a button is pressed. Because no data has been written
yet, it blocks and the program goes into a message loop. The user then presses a
different button, which causes code to be executed, which in turn attempts to read
data from the socket, and so on.

To resolve the general problems with blocking sockets, the Windows Sockets
standard states that there may only be one outstanding blocked call per thread of
execution. This means that applications that are re-entered (as in the example
above) will encounter errors whenever they try to take some action while a blocking
function is already in progress. The creation of worker threads to perform blocking
socket operations is a common approach to address this issue, although it introduces
additional complexity into the application.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 7

It should be noted that there are advantages to using blocking sockets. In most
cases, the application design and implementation is simpler, and raw throughput
(the rate at which data is sent and received) is generally higher with blocking sockets
because it does not have to go through an event mechanism to notify the application
of a change in status. In general, if your application is designed as a client, and does
not have the need to establish multiple simultaneous connections then blocking
sockets may be appropriate. However, if your application functions as a server or
needs to establish multiple connections then an asynchronous, event-driven design is
more appropriate.

The SocketWrench control facilitates the use of non-blocking sockets by firing events
when appropriate. For example, an OnRead event is generated whenever the
remote host writes on the socket, which tells your application that there is data
waiting to be read. The use of non-blocking sockets will be demonstrated in the next
section, and is one of the key areas in which a control has a distinct advantage over
coding directly against the Windows Sockets API.

In summary, there are three general approaches that can be taken when building an
application with the control in regard to blocking or non-blocking sockets:

e Use a blocking (synchronous) socket. In this mode, the program will not
resume execution until the socket operation has completed. Blocking
operations can cause code to be re-entered at a different point, leading to
complex interactions (and difficult debugging) if there are multiple active
controls in use by the application.

e Use a non-blocking (asynchronous) socket, which allows your application to
respond to events. For example, when the remote system writes data to the
socket, an OnRead event is generated for the control. Your application can
respond by reading the data from the socket, and perhaps send some data
back, depending on the context of the data received.

e Use a combination of blocking and non-blocking socket operations. The ability
to switch between blocking and non-blocking modes "on the fly" provides a
powerful and convenient way to perform socket operations. Note that the
warning regarding blocking sockets also applies here.

If you decide to use non-blocking sockets in your application, it's important to keep
in mind that you must check the return value from every read and write operation,
since it is possible that you may not be able to send or receive all of the specified
data. Frequently, developers encounter problems when they write a program that
assumes a given number of bytes can always be written to, or read from, the socket.
In many cases, the program works as expected when developed and tested on a
local area network, but fails unpredictably when the program is released to a user
that has a slower network connection (such as a serial dial-up connection to the
Internet). By always checking the return values of these operations, you insure that
your program will work correctly, regardless of the speed or configuration of the
network.

Secure Network Communication

Security and privacy is a concern for everyone who uses the Internet, and the ability
to provide secure transactions over the Internet has become one of the key
requirements for many business applications.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 8

SocketWrench has the ability to establish secure connections with remote servers, as
well as function as a secure server itself. Although most of the technical issues such
as data encryption are handled internally by the control and library, a general
understanding of the standard security protocols is useful when designing your own
applications.

When you establish a connection to a server over the Internet (for example, a web
server), the data that you exchange is typically routed over dozens of computer
systems until it reaches its destination. Any one of these systems may monitor and
log the data that it forwards, and there is no way for either the sender or receiver of
that data to know if this has been done. Exchanging information over the Internet
could be likened to talking with someone in a public restaurant. Anyone can choose
to listen to what you're saying, and unless they introduce themselves, you have no
idea who they are or if they've even heard what you said.

To ensure that private information can be securely exchanged over the Internet, two
basic requirements must be met: there must be a way to send that information so
that only the sender and the receiver can understand what is being exchanged, and
there must be a way for them to determine that they each are in fact who they claim
to be. The solution to the first problem is to use encryption, where a key is used to
encrypt and decrypt the data using a mathematical formula. The second problem is
addressed by using digital certificates. These certificates are issued by a certificate
authority (CA), which is a trusted third-party organization who verifies that the
individual or company which is issued a certificate is who they claim to be. These two
concepts, encryption and digital certificates, are combined to provide the means to
send and receive secure information over the Internet.

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape as a
way to exchange information securely over the Internet, and is still the most
common protocol in use today. The latest improvements to SSL have resulted in the
Transport Layer Security (TLS) protocol, and it is beginning to replace SSL as the
standard for secure communications over the Internet. Microsoft also developed a
protocol similar to SSL called the Private Communication Technology (PCT) protocol.
All of these protocols were designed to provide essentially the same thing: a private
exchange of encrypted data between the sender and receiver, making it unreadable
by an intermediate system. Using the restaurant analogy, it would be as if two
people were speaking in a language that only they could understand. Although
someone sitting at the next table could listen in on the conversation, they wouldn't
have any idea what was actually being said.

A secure connection, for example between a web browser and a server, begins with
what is called the handshake phase where the client and server identify themselves.
When the client first connects with the server it sends a block of data to the server
and the server responds with its digital certificate, along with its public key and
information about what type of encryption it would like to use. Next, the client
generates a master key and sends this key to the server, which authenticates it.
Once the client and server have completed this exchange, keys are generated which
are used to encrypt and decrypt the data that is exchanged. With the handshake
completed, a secure connection between the client and server is established.
SocketWrench handles the handshake phase of the secure connection automatically
and does not require any additional programming. If a secure connection cannot be
established, an error is returned and the network connection is closed.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 9

After the handshake phase has completed, the client may choose to examine the
digital certificate that has been returned by the server. The information contained in
the certificate includes the date that it was issued, the date that it expires,
information about the organization who issued the certificate (called the issuer) and
who the certificate was issued to (called the subject of the certificate). The client
may also validate the status of the certificate, determining if it was issued by a
trusted certificate authority and was returned by the same company or individual it
was issued to. There may be certain cases where the client determines that there's a
problem with the certificate (for example, if the certificate's common name does not
match the domain name of the server), but chooses to continue communicating with
the server. Note that the connection with the server will still be secure in this case.
In other cases, for example if the certificate has expired, the client may choose to
terminate the connection and warn the user.

Digital Certificates

With secure connections, digital certificates are used to exchange public keys for
data encryption and to provide identification information. This information typically
includes the organization that was issued the certificate, its physical location and so
on. The certificate itself is used to validate that the public key actually belongs to the
entity that it was issued to. The certificate also includes information about the
Certification Authority (CA) who issued the certificate. The CA is responsible for
validating the information provided by that organization, and then digitally signing
the certificate. This establishes a relationship between the two so that when others
validate the certificate, they know that it has been issued by a trusted third-party.
For example, let's say that a company wants to implement a secure site so that
people can order products online. They would provide information about their
company (organizational contacts, financial information and so on) to a trusted third
party organization such as Verisign. Verisign would then verify that the information
they provided was complete and correct, and then would issue a signed certificate to
them, which they install on their server. When a user (client system) connects to
their server and checks the certificate, they see that it was issued by Verisign, a
trusted Certification Authority. In essence, the user is saying that because they trust
Verisign, and Verisign trusts the company the certificate was issued to, they will trust
the company as well.

To establish this relationship between the Certification Authority and the organization
a certificate is issued to, there needs to be a root certificate which has been signed
by the same trusted organization. This serves as the beginning of the certification
path that is used to validate signed certificates. Using the above example, on the
user's system there is a root certificate for Verisign, signed by Verisign. Root
certificates are maintained in the local system's certificate store which is essentially a
database of digital certificates. This database is structured so that different types of
certificates can be organized in one central location on the system, and a standard
interface is provided to enumerate and validate these certificates. Certificates are
associated with a store name, allowing them to be easily categorized. For example,
root certificates are stored under the name "root", while a user's personal certificates
(along with their private keys) are stored under the name "my".

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 10

[Certificate Store |
E .

(rooT) [ca) (

i' Thawte

Il

Global8ign

: '-."erisign Microsoft

ull

=l SecureMNet

—_

When the Windows operating system is installed, there is a certificate store that
contains the root certificates for the major Certification Authorities. However, there
are situations where additional certificates may need to be added to the system. To
facilitate this, there is a tool called CertMgr which allows a user to install certificates,
as well as export or remove certificates from the certificate store. When managing
your system's certificate store, you should take the same care that you do when
making changes to the system registry. Inadvertently removing a certificate could
result in errors when attempting to access secure systems.

In general, the one situation where certificate management becomes important is
when you want to develop your own secure server. This is because your server
needs to have a signed certificate to send to the client in order to establish the
secure connection. For general-purpose commercial applications, this generally
means you would need to obtain a certificate that has been signed by a Certification
Authority such as Verisign. This certificate would then be installed in the certificate
store on the server. However, for development purposes it may be inconvenient to
purchase a certificate. There also may be situations in which an organization wishes
to function as its own Certification Authority and issue certificates themselves. This
allows the organization to control how certificates are managed and can be ideal for
secure applications that are designed for the corporate intranet. A utility for creating
self-signed root certificates and server certificates is included with SocketWrench.

Programming With SocketWrench in Visual Basic

Because SocketWrench has a large number of properties, you might feel
overwhelmed when you start reading through the technical reference material. Don’t
worry -- you only need to understand how to use a handful of properties and events
to get started. Once you’ve become more comfortable and knowledgeable about
sockets programming, you’ll appreciate the power and flexibility that SocketWrench
gives you.

Each control that you use corresponds to one socket, which may or may not be
connected to a remote host. If you need access to multiple sockets, you must use
multiple controls, typically as a control array. This is most commonly needed when
your application acts as a server and must be able to handle several connections at
one time.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 11

A Sample Client Program

The sample program that will be used throughout this document is a simple tool that
can be used to connect with an echo server, a program which echoes back any data
that's sent to it. Later on, we'll also cover how to implement your own echo server.

The first step, after starting Visual Basic, is to include the SocketWrench control in
your new project. In Visual Basic 4.0, you should select Tools|Custom Controls,
while in Visual Basic 5.0 and Visual Basic 6.0, you should select
Project|Components. A dialog will display all of the available ActiveX controls, then
select the Catalyst SocketWrench Control. Note that if you have a previous version of
SocketWrench installed on the system, both versions will be displayed. You should
select version 4.0 for this example.

To begin, you'll need to create a form that has three labels, three text controls, a
button and the SocketWrench control. The form might look something like this:

i%. Form1 Mi=] E3
SRR |Te:-ct1
Send: - ITEHtE Ll

When executed, the user will enter the name or IP address of the system in the
Textl control, the text that is to be echoed in the Text2 control, and the server's
reply will be displayed in the Text3 control. The Command1 button will be used to
establish a connection with the remote server. When you save your project, call it
"Client".

First we should initialize the controls in the Form's Load subroutine. Note that we
want to disable the Text2 and Text3 controls, since they only should be usable once
a connection to a server has been established. The code should look like this:

Private Sub Form Load()
Commandl.Caption = "Connect"
Commandl.Enabled = True
Textl.Enabled = True
Text2.Enabled False
Text3.Enabled False

End Sub

The next step is to write the code that actually establishes a connection with the
remote server in the Click event for the Command1 button. The code should look
like this:

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming

Private Sub Commandl Click()

If Not SocketWrenchl.Connected Then
Dim strRemoteHost As String

12

Dim nError As Long

strRemoteHost = Trim(Textl.Text)

SocketWrenchl.AutoResolve = False
SocketWrenchl.Blocking = False
SocketWrenchl.Protocol = swProtocolTcp

nError

SocketWrenchl.Connect (strRemoteHost, swPortEcho)

If nError <> 0 Then
MsgBox "Unable to connect to remote host", vbExclamation
Exit Sub

End If

Commandl .Enabled = False

Else

SocketWrenchl.Disconnect
Commandl.Caption = "Connect"
Text2.Enabled = False
Text3.Enabled = False

End If

End Sub

The first SocketWrench property that we encounter is the Connected property. This
is a boolean flag which tells us if the control has established a connection to a
remote host. We're using this to allow the Command1l button to function in one of
two ways: if no connection has been established, then pressing the button will cause
the client to make a connection to the server entered in the Textl control. However,
if there is an active connection, then pressing the button will disconnect the client

from the server.

These next three SocketWrench properties are used to define some basic functions of
the control, such as how host names are resolved and what network protocol is used.
These properties are:

AutoResolve

Blocking

This property specifies that the control should not immediately attempt to
resolve host names into IP addresses if the HostName and/or
HostAddress property are set. In general it is recommended that you
initialize this property value to False unless your application has a specific
to automatically resolve host names.

This property specifies if the application should wait for a socket
operation to complete before continuing. By setting this property to False,
that indicates that the application will not wait for the operation to
complete, and instead will respond to events generated by the control.
This is the recommended approach to take when designing your
application.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 13

Protocol This property determines which protocol is going to be used to
communicate with the remote application. Most commonly, the value
swProtocolTcp is specified, which means that the stream-based
Transmission Control Protocol will be used. To send UDP datagrams, this
property can be set to the value swProtocolUdp.

To establish the connection to the server, the Connect method is called, passing the
name of the server to connect to and the port number of the echo server. It should
be noted that there are a number of optional arguments to this method, but for the
purposes of this example, only the host name and port number are needed. If the
connection attempt is successful, the method will return a value of zero. However, if
an error occurs the method will return a non-zero value which specifies an error
code.

If the connection attempt is successful, then the Command1 button is disabled.
Because the socket is non-blocking (that is, the Blocking property is False), when
the Connect method returns it does not mean that the connection has actually
completed. Instead, it means that the connection process has begun, and completion
is signaled by the control's OnConnect event firing. So between the time that the
Connect method is called to establish a connection and the time that the
OnConnect event is fired to indicate that the connection has been completed, the
user should not be able to press the Command1 button because it would result in the
Connect method being called again.

To update our form when a connection has been established, we need to add some
code to the control's OnConnect event. Remember, this event is only called after a
connection attempt has completed on a non-blocking socket:

Private Sub SocketWrenchl Connect ()
Commandl.Caption = "Disconnect"
Commandl.Enabled = True
Text2.Enabled = True
Text3.Enabled = True
MsgBox "Connect to remote host", vbInformation

End Sub

This will change the caption of our Command1 button to "Disconnect" (informing the
user that when they press it, now it will disconnect the current session), and enable
our Text2 and Text3 controls. We also display a message box indicating that the
connection has completed.

There is a possibility that the remote host may terminate our connection, and our
client application needs to be able to handle this. If this happens, for example if the
server is stopped, then the control's OnDisconnect event will fire. In our code, we'll
reset our command button's caption, disable the Text2 and Text3 controls and
display a message box indicating that the connection has been lost. The code would
look like this:

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 14

Private Sub SocketWrenchl Disconnect ()

SocketWrenchl.Disconnect

Commandl.Caption = "Connect"

Commandl.Enabled = True

Text2.Enabled = False

Text3.Enabled = False

MsgBox "Disconnected from remote host", vbInformation
End Sub

The one thing that may seem strange here is calling the Disconnect method. After
all, the connection has been closed, so this appears to be redundant. The thing to
remember is that a socket is a communications endpoint; for every conversation
between a client and a server, there are two sockets: one on your end (the client)
and one on theirs (the server). When the OnDisconnect event fires, what the
control is telling you is that the other socket, in this case the server's socket, has
been closed. However, until you call the Disconnect method it will remain open on
the client side. For the connection to be completely terminated, the sockets on both
ends of the connection need to be closed.

What happens if there is an error while the client attempts to connect to the server?
It is possible for the Connect method to return zero (indicating success), and then
once the connection attempt begins, an error occurs. For example, this can happen if
there is no server listening on the specified port number. To be able to handle this,
the control has an event called OnError which is fired whenever an error such as
this occurs. Let's add some code to the event to report any errors:

Private Sub SocketWrenchl Error(ByVal Error As Variant,
ByVal Description As Variant)

If Error <> swErrorOperationWouldBlock Then

SocketWrenchl.Disconnect

Commandl.Caption = "Connect"

Commandl.Enabled = True

Text2.Enabled = True

Text3.Enabled = True

MsgBox Description, vbExclamation, "Error " & CStr(Error)
End If

End Sub

The OnError event has two arguments passed to it, an error code and a textual
description of the error. The first thing that we do is compare this error against one
of our predefined error constants swErrorOperationWouldBlock which occurs if a
socket operation would cause a non-blocking socket to block. For example,
attempting to read data from a non-blocking socket and there is no data available at
that time would result in this error. The reason that we're specifically checking for it
is because this particular error code is really more of a warning to the application,
not a fatal error. In all other cases, we disconnect the client session and report the
error.

Now that the code to establish the connection has been written, the next step is to

actually send and receive data to and from the server. To do this, the Text2 control
should have the following code added to its KeyPress event:

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 15

Private Sub Text2 KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
Dim strBuffer As String
Dim cchBuffer As Long, nResult As Long

strBuffer = Text2.Text & vbCrLf
cchBuffer = Len(strBuffer)
Text2.Text = ""

KeyAscii = 0

nResult = SocketWrenchl.Write(strBuffer, cchBuffer)

If nResult = -1 Then
MsgBox "Unable to send data to server"
Exit Sub
End If
End If

End Sub

The Write method is used to send data to the remote server. The first argument is
the buffer that contains the data (in this case, a string variable) and the second
argument is the number of bytes to write. Note that the second argument is optional
and if it is omitted the entire buffer is written. For clarity, it is recommended that the
buffer length be specified. Note that in addition to strings, the Write method will
also accept bytes and byte arrays as parameters.

Because our example is connecting to an echo service, once the data has been sent
to the remote host, it immediately sends the data back to the client. This generates
an OnRead event in SocketWrench, which should have the following code:

Private Sub SocketWrenchl Read()
Dim strBuffer As String
Dim nResult As Long

nResult = SocketWrenchl.Read(strBuffer, 1024)
If nResult > 0 Then
Text3.Text = Text3.Text + strBuffer
End If
End Sub

The OnRead event indicates that data has arrived and is available to be read by the
control. The Read method then reads the data sent by the server and stores it in the
buffer specified in the first parameter. The second parameter specifies the maximum
number of bytes to read. Note that in this case, it is an arbitrary value of 1,024
bytes. One important thing to note is that requesting to read a specified number of
bytes does not guarantee that you will actually receive that amount. Because TCP is
a stream-oriented protocol, there is no concept of a "message boundary" or a one-
to-one relationship between the amount of data written to the socket and the
amount of data read from it. In other words, the server sends four pieces of data in
512 byte blocks, there is no guarantee that your program will get four OnRead
events for that number of bytes per read. Instead, you may get more than four
events (in which the data sent is received in smaller blocks) or you may get fewer
events, with the data being combined. This is the nature of how TCP/IP works, and
must be accounted for in the design of you application. Typically this means
buffering the data in the program and either looking for special "end of message"
characters in the data stream, accumulating data in fixed sizes and processing it as
the buffer is filled.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 16

A good rule of thumb to follow when considering your design is thinking about how
your program would work if, after asking for some arbitrary number of bytes of data,
it received only a single byte. If your program is robust enough to handle this
situation, then it will function correctly under a wide variety of networking
environments (such as low throughput or high latency networks). On the other hand,
if your program expects that it will be able to read a specific number of bytes of data
at any given time, then you may find that it works correctly in under most
circumstances, but intermittently fails under low bandwidth or high network load
conditions.

The last piece of code to add to the sample is to handle closing the socket when the
program is terminated by selecting Close on the system menu. The best place to put
socket cleanup code is in the form's Unload event, such as:

Sub Form Unload (Cancel As Integer)
If SocketWrenchl.Connected Then SocketWrenchl.Disconnect
End

End Sub

If the Connected property returns True, then a connection has been established and
we should disconnect from the server before the program terminates. With all of the
properties and event code needed for the sample client application completed, all
that's left to do is run the program! Of course, in a real application you'd need to
provide extensive error checking. SocketWrench errors start at 10,000 and
correspond to the error codes used by the Windows Sockets API. Most errors will
occur when setting the host name, address, service port or using one of the
methods.

Note that if you don't have access to an echo server, then you won't be able to test
your client program just yet. But don't worry, the next step is building your own
server application and you can use the client to communicate with it.

Building An Echo Server

The next step is to implement your own echo server. The server will listen on the
echo port, accept connections from one or more clients and echo back any data that
is sent to it. First, start a new Visual Basic project with a single form, a button in the
center of the form and the SocketWrench control. It might look something like this:

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 17

The first that we need to do is create a global variable called LastSocket which we
will use to keep track of the number of clients that have connected to our server.
This should be done in the general declaration section, as follows:

Dim LastSocket As Integer

Next, we will initialize the form in the Load subroutine with the following code:

Private Sub Form Load()

Commandl.Caption = "Listen"
LastSocket = 0
End Sub

When the user presses the command button, we want the server to begin listening
for connections. Remember that the first thing that a server application must do is
listen on a local port for incoming connections from a client. You'll know that a client
is attempting to connect with you when the OnAccept event is generated for the
SocketWrench control.

To accept the connection, your program calls the Accept method, passing the
listening socket handle as a parameter. As you'll recall from the TCP/IP tutorial, the
act of accepting a connection causes a second socket to be created. The original
listening socket continues to listen for more connections, while the second socket can
be used to communicate with the client that connected to you. If you use the Accept
method to accept the connection on the same instance of the control, you're
effectively telling the control to close the original listening socket and from that point
on the control can be used to communicate with the client. While this is convenient,
it is also limiting -- since the listening socket has been closed, no more clients can
connect with your program, effectively limiting it to a single client connection.

A better approach is to create an additional instance of the control and have it accept
the connection, leaving the original listening socket available so that more clients can
establish a connection with your server. The problem is, how many clients are going
to attempt to connect to you? Of course, you could drop a fixed number of
SocketWrench controls on your form, thereby limiting the number of connections,
but that's not a very good design. The better approach is to create a control array
which can be dynamically loaded when a connection is attempted by a client, and
unloaded when the connection is closed. This is the approach that we'll take in our
echo server.

In order to implement a dynamically-loaded control array, set the Index property of
SocketWrenchl to 0. This will also cause VB to include the parameter Index in events
that you implement.

To have the server begin listening when the button is pressed, we need to add code
to the button's Click event. Initially there will only be one instance of the control in
our control array, identified as SocketWrench1(0) and it will be used to listen for
connections:

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 18

Private Sub Commandl Click()
If Not SocketWrenchl (0).Listening Then
Dim nError As Long

SocketWrenchl (0) .AutoResolve = False
SocketWrenchl (0) .Blocking = False
SocketWrenchl (0) .Protocol = swProtocolTcp
SocketWrenchl (0) .LocalPort = swPortEcho
nError = SocketWrenchl (0) .Listen ()
If nError <> 0 Then
MsgBox "Unable to listen for connections", vbExclamation
Exit Sub
End If
Commandl.Caption = "Disconnect"
Else
SocketWrenchl (0) .Disconnect
Commandl.Caption = "Listen"
End If
End Sub

There are two new properties here, the Listening property and the LocalPort
property. The Listening property is a boolean flag, similar to the Connected
property in our client example. It will return True if the control is currently listening
for client connections. The LocalPort property is used by server applications to
specify the local port that it's listening on for connections. By specifying the standard
port used by echo servers (port 7), any other system can connect to yours and
expect the program to echo back whatever is sent to it.

If the control is listening for connections and you press the button, it will disconnect
the socket. This stops the control from listening for new client connections, however
it will not interrupt any clients that have already connected to the server. The reason
for this is because the client connections are actually managed on separate sockets
which are not affected by closing the listening socket.

When our server program is executed and you press the button, the control will
begin listening for client connections. When this occurs, the control's OnAccept
event will fire. The code for this event should look like this:

Private Sub SocketWrenchl Accept (Index As Integer, ByVal Handle As Variant)
Dim I As Integer

For I = 1 To LastSocket
If Not SocketWrenchl (I).Connected Then Exit For
Next I

If I > LastSocket Then
LastSocket = LastSocket + 1: I = LastSocket
Load SocketWrenchl (I)

End If

SocketWrenchl (I) .AutoResolve = False
SocketWrenchl (I) .Blocking = False
SocketWrenchl (I) .Protocol = swProtocolTcp
SocketWrenchl (I) .Accept Handle

End Sub

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 19

The first thing that we do is iterate through each instance of the control in our
control array, checking to see if it is connected to a client. If we find a control that is
not connected to a client (in other words, the client has disconnected from the
server) then we will re-use that control. If all of the controls are currently being
used, then we need to increment the LastSocket variable and dynamically load
another instance of the control.

Next, we initialize the control's properties, and then the Accept method is called with
the Handle parameter that is passed to the control. After executing this statement,
the control is now ready to start communicating with the client program. Since it's
the job of an echo server to echo back whatever is sent to it, we have to add code to
the control's OnRead event, which tells it that the client has sent some data to us:

Private Sub SocketWrenchl Read(Index As Integer)
Dim strBuffer As String
Dim cbBuffer As Long

cbBuffer = SocketWrenchl (Index) .Read (strBuffer, 1024)
If cbBuffer > 0 Then
SocketWrenchl (Index) .Write strBuffer, cbBuffer
End If
End Sub

Finally, when the client closes the connection, the socket control must also close its
end of the connection. This is accomplished by adding a line of code in the control's
OnDisconnect event:

Private Sub SocketWrenchl Disconnect (Index As Integer)
SocketWrenchl (Index) .Disconnect
End Sub

To make sure that all of the socket connections are closed when the application is
terminated, the following code should be included in the form's Unload event:

Private Sub Form Unload (Cancel As Integer)
Dim I As Integer

If SocketWrenchl (0).Listening Then SocketWrenchl ((0).Disconnect
For I = 1 To LastSocket
If SocketWrenchl ((I).Connected Then SocketWrenchl ((I).Disconnect
Next I
End
End Sub

This will disconnect the listening socket so that no more clients can establish
connections, and will then disconnect from each of the clients.

A Secure Echo Client

In the SocketWrench control, a number of properties have been added to support
secure connections. Note that a secure connection requires a Secure Edition
development license. The boolean Secure property controls whether or not a secure
connection is established, and must be explicitly set in code prior to making the
connection attempt or accepting a connection from a client. The default value for this
property is False, which means that the control should establish a standard (non-
secure) connection to the server. By setting this property to True, the control will
attempt to establish a secure connection.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 20

To use the secure features of SocketWrench, let's modify our echo client/server
example to establish a secure connection. The first thing that we need to do is use a
different port number than the standard echo port. For purposes of this example,
we'll use port 7000 for our secure client and servers program. Modify the command
button's Click event to use this new port number and set the Secure property to
True.

Private Sub Commandl Click()

If Not SocketWrenchl.Connected Then
Dim strRemoteHost As String
Dim nError As Long

strRemoteHost = Trim(Textl.Text)

SocketWrenchl.AutoResolve = False
SocketWrenchl.Blocking = False
SocketWrenchl.Secure = True

nError = SocketWrenchl.Connect (strRemoteHost, 7000)

If nError <> 0 Then
MsgBox "Unable to connect to remote host", vbExclamation
Exit Sub

End If

Commandl .Enabled = False
Else
SocketWrenchl.Disconnect
Commandl.Caption = "Connect"
Text2.Enabled False
Text3.Enabled False
End If

End Sub

Once a secure connection has been established, a number of other security related
properties become available to the control. These fall into two general groups,
returning information either about the secure connection itself, or about the server's
digital certificate. The properties which provide information about the connection are:

CipherStrength This property returns information about the relative strength of
the encryption that is being used to secure the data. The value
returned is actually the length of the key (in bits) used by the
encryption algorithm, and will typically be 40, 56 or 128. A key
length of 40 bits is considered to be weak, while a key length of
56 bits is considered to be moderate and 128 bit keys are
considered to be very secure.

HashStrength This property returns information about the strength of the
message digest (hash) that was selected. Common values
returned by this property are 128 and 160.

SecureCipher This property identifies the encryption algorithm that was

selected. The algorithms supported are RC2, RC4, DES, and
Triple DES. The most commonly used algorithm is RC4.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 21

SecureHash This property identifies the message digest (hash) algorithm
that was selected. The algorithms supported are SHA and MD5.
The most commonly used message digest is MD5. This
algorithm is used during the handshake phase between the
client and server, and is made available to the client for
informational purposes.

SecureKeyExchange This property identifies the key exchange algorithm that was
selected. The algorithms supported are RSA, KEA and Diffie-
Hellman. The most commonly used key exchange algorithm is
RSA.

SecureProtocol This property identifies the protocol used to establish the secure
connection. The protocols supported are SSL 2.0, SSL 3.0, PCT
1.0 and TLS 1.0.

In addition to information about the secure connection, there are several properties
which return information about the remote server's digital certificate. These
properties are:

CertificateExpires This property returns the date that the server's certificate
expires.
Certificatelssued This property returns the date that the server's certificate was

issued by the certificate authority.

Certificatelssuer This property returns information about the organization that
issued the certificate. The data is returned as a string which
contains one or more tagged name and value pairs.

CertificateStatus This property returns information about the status of the
certificate. The client is responsible for checking this value, and
based on the value returned, decide if the connection should be
terminated or not.

CertificateSubject This property returns information about the organization that the
certificate was issued to. Like the Certificatelssuer property, this
property returns a string which contains one or more tagged
name and value pairs.

It is recommended that your application immediately check the value of the
CertificateStatus property after the secure connection has been established. This
allows your application to make the decision as to whether or not it is safe to
communicate with the server based on the status of the digital certificate it returns.
For example, using the above code the CertificateStatus property would return a
value of 1 (swCertificateValid), which indicates that the certificate is valid. However,
let's modify the code slightly, changing the value of the host name to the IP address
for that same server. If you executed the program again, this time the
CertificateStatus property would return a value of 2 (swCertificateNoMatch). What
this tells you is that, although the certificate is valid, the name in the certificate does
not match the host name that you used to connect to the server.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 22

This is because you've specified an IP address, but the name in the certificate is
normally the domain name for the server. Note that you can try the same thing with
your web browser specifying the IP address instead of the domain name in the URL
and you should get a warning that the site name doesn't match the certificate name.

So, let's say that for your application it is acceptable to connect to a site if the
certificate is valid, or if the domain name does not match the name in the certificate;
however, it is not acceptable to connect to a site where the certificate has expired,
has been revoked, is untrusted or invalid. You could write code that looks like this:

Private Sub SocketWrenchl Connect ()

Commandl.Caption = "Disconnect"

Commandl.Enabled = True

MsgBox "Connect to remote host", vbInformation

Text2.Enabled = True

Text3.Enabled = True

If SocketWrenchl.CertificateStatus > swCertificateNoMatch Then
MsgBox "The certificate could not be validated", vbExclamation
SocketWrenchl Disconnect
Exit Sub

End If

End Sub

If you wanted to display specific information about a certificate, for example, the
name of the organization that issued the certificate or the name of the company that
it was issued to, you would need to use the CertificateIssuer and
CertificateSubject properties. These are strings that consist of one or more values,
separated by a comma. Each comma-separated value is a tagged pair of values
which provides information about the certificate. For example:

C=US, O="RSA Data Security, Inc."
In this case, there are two values:

1. C=US
2. O="RSA Data Security, Inc."

Each of these values consist of an identifier called an RDN (Relative Distinguished
Name) and its data. Since the second value contains a comma, it is enclosed in
quotes, so this needs to be accounted for when parsing the string. There are a
predefined set of RDNs defined by the X.500 standard which are used in certificates.
The most commonly used RDNs in X.509 certificates are:

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

So, for example, if you wanted to determine the domain name that a certificate was

issued for, you would need to read the value of the CertificateSubject property and
parse the resulting string for the "CN" (Common Name) RDN.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 23

The samples included with SocketWrench include code which displays certificate
information and provides some general purpose routines for parsing the
Certificatelssuer and CertificateSubject properties.

A Secure Echo Server

The next step is to modify the server example so that when a secure client connects
to it, the appropriate certificate is passed to the client. To do this, first modify the
command button's Click event to listen on the new port humber:

Private Sub Commandl Click()
If Not SocketWrenchl (0) .Listening Then
Dim nError As Long

SocketWrenchl (0) .AutoResolve = False

SocketWrenchl (0) .Blocking = False

SocketWrenchl (0) .Protocol = swProtocolTcp
) .

SocketWrenchl (0) .LocalPort = 7000

nError = SocketWrenchl (0) .Listen ()
If nError <> 0 Then
MsgBox "Unable to listen for connections", vbExclamation
Exit Sub
End If
Commandl.Caption = "Disconnect"
Else
SocketWrenchl (0) .Disconnect
Commandl.Caption = "Listen"
End If
End Sub

Next, modify the OnAccept event to set the control into secure mode, and to specify
the name of the server certificate that is going to be passed to the client:

Private Sub SocketWrenchl Accept (Index As Integer, ByVal Handle As Variant)
Dim I As Integer

For I = 1 To LastSocket
If Not SocketWrenchl (I).Connected Then Exit For
Next I

If I > LastSocket Then
LastSocket = LastSocket + 1: I = LastSocket
Load SocketWrenchl (I)

End If
SocketWrenchl (I) .AutoResolve = False
SocketWrenchl (I) .Blocking = False
SocketWrenchl (I) .Protocol = swProtocolTcp
SocketWrenchl (I) .CertificateName = "localhost"
SocketWrenchl (I) .Secure = True

)

SocketWrenchl (I
End Sub

.Accept Handle

In this case, we've set the name of the certificate to "localhost", which we'll use for
the name of the local system. This can be any string which uniquely identifies a
certificate installed in the system certificate store. When the client connects to the
server, this is the digital certificate that will be passed to it during the handshake
phase of the secure connection.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 24

Of course, you probably don't have a server certificate installed, so if you ran this
program, an error would be generated indicating that the certificate doesn't exist.

To create a certificate for testing purposes, we'll do two things. First, we'll create a
self-signed certificate which establishes you as your own Certification Authority. Then
we'll use that to sign a server certificate which will be placed in your personal
certificate store. Note that because you're functioning as your own CA, any other
systems that would attempt to connect to your secure echo server would return an
error (indicating that the certificate was not trusted) until your root certificate was
installed on their system.

Included in Microsoft's Platform SDK is a utility called CreateCert which will allow you
to easily create digital certificates, and we've included this utility with SocketWrench.
To create the self-signed certificate, enter the following from the command line:

CreateCert "CN=TestCA" -k s

This will create a file called SelfSigned.cer which contains the self-signed root
certificate with a name of "TestCA". The certificate will already be installed in your
own personal certificate store, however you need to install it as a trusted root
certificate. To do this, use the CertMgr utility and select the Import button. This will
start the Certificate Import Wizard. Select the SelfSigned.cer file, and then choose
the option to place the certificate in a specified store (do not have it automatically
select the store). Press the Browse button and select Trusted Root Certification
Authorities. A confirmation dialog will make sure that you want to install it; once
complete, your new test root certificate has been installed.

Next, we need to create a server certificate. To do this, enter the following command
at the command prompt:

CreateCert "CN=localhost" -is TestCA my u

This will create a file called Certificate.cer in the current directory, and will install
your certificate in your personal store. Now, with your new server certificate, you
should be able to connect to your secure echo server. It should function just as the
standard, non-secure version except that the data that is being sent and received is
encrypted. Remember, if you want a different system to connect to your server, you
need to copy the SelfSigned.cer to that system and install it in the trusted root
certificate store using CertMgr, otherwise the server certificate will be considered
invalid. Note that to access the secure features of SocketWrench requires a Secure
Edition development license.

Debugging Applications

One of the issues that every developer has to contend with are problems that arise in
an application after it's been distributed to end-users. And errors related to Windows
Sockets programming can be even more difficult to track down because there are so
many variables involved (such as the platform, operating system version, system
configuration, and so on). To address these difficult problems, the SocketWrench
control has the built-in ability to log the Windows Sockets API function calls that are
made. There are three properties related to function tracing: Trace, TraceFile and
TraceFlags. Setting these properties allows your application to dynamically manage
function tracing features available to the control. The Trace property is a boolean
flag which simply enables or disables the function tracing feature.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 25

The TraceFile property specifies the name of a trace log file in which each function
and its parameters will be written. If this property is not explicitly set, then a file
named CSTRACE.LOG will be created in the system's temporary directory (the
directory specified by the TEMP environment variable). The TraceFlags property
specifies what type of logging will be performed by the control, and may be set to
one of four values: 0 (TRACE_ALL) in which all functions will be logged, 1
(TRACE_ERROR) in which only errors will be logged, 2 (TRACE_WARNING) in which
case both warnings and errors will be written to the log file, and 4 (TRACE_HEXDUMP
in which all functions will be logged, together with ASCII and hexadecimal displays of
all data that is sent or received on sockets. By default, all functions calls are logged
by the control (TRACE_ALL).

For the SocketWrench library there are two functions related to function tracing:
InetEnableTrace and InetDisableTrace. The arguments to InetEnableTrace are
equivalent to the TraceFile and TraceFlags properties of the controls, as described
above. Calling InetEnableTrace is equivalent to setting Trace = True, and calling
InetDisableTrace is equivalent to setting Trace = False.

The trace file has the following format:

VB6 INF: WSAAsyncSelect (46, Oxccd4, 0x7e9, 0x27) returned 0
VB6 WRN: connect (46, 192.0.0.1:1234, 16) returned -1 [10035]
VB6 ERR: accept (46, NULL, O0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case,
it is Visual Basic 6.0). The second column identifies if the trace record is reporting
information, a warning, or an error. What follows is the name of the function being
called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is
placed inside brackets).

When reading a trace log, there are two common things that you will see:

1. The error code 10035, which corresponds to the Winsock error
WSAEWOULDBLOCK is a normal occurrence on connect calls, and should not
be taken as a cause for concern by itself.

2. The normal return value for a select call is greater than zero, typically a value
of one. A select call that returns zero usually indicates a timeout.

If parameters are passed as integer values, they are recorded in decimal. If the
parameter or return value is a memory address) it is recorded as a hexadecimal
value preceded with "Ox". A special type of pointer, called a null pointer, is recorded
as NULL. Those functions which expect socket addresses are displayed in the
following format: aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the
number following the colon represents the port number in host byte order. Note that
in the second line of the above example, the control is attempting to connect to a
system with the IP address 192.0.0.1 on port 1234.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 26

To enable tracing in your application, you also need to redistribute an extra file called
WSATRACE.DLL. This library contains the actual function tracing code, and If
WSATRACE.DLL is not included with your software, the application will proceed
nonetheless. If you are using the SocketWrench control, it will reset the Trace
property to False if the tracing library cannot be loaded. If you are using the
SocketWrench library, the function InetEnableTrace will return FALSE if the tracing
library cannot be loaded. Note that this DLL will only provide function tracing
capability to the SocketWrench control and library; it is not a general purpose DLL
for tracing Windows Sockets functions and will not log the functions made by any
other application or component.

There are several ways that you could incorporate function tracing in your software.
The simplest would be a menu item or a command line switch (like /DEBUG) in which
the Trace property would be set to True. A more complex approach would be to
include a dialog or property sheet which allows the user to specify the log file name
and tracing options. When an end-user calls for technical support and is
encountering a problem that you think may be network related, you can instruct
them to enable the tracing feature and then email or fax you a copy of the log file. In
turn, if it is a problem that you don't understand, you can send the log file to a
support technician who can analyze the log and provide you with additional
information about what may be going on inside your application.

Remember that if you do not use the tracing features at any time during the
execution of your program, there is no additional performance penalty. If you do
enable tracing at some point, the tracing library will be loaded and memory will be
allocated by the logging functions. These functions open, append to the trace log,
flush and then close the log file for each Windows Sockets function call that is made.
This insures that the last function called is logged in case of a general protection
fault or other abnormal termination of the program. However, because of the file I/O
overhead, it's recommended that your program rename or remove the log file before
beginning a new trace.

Putting It All Together

This guide has introduced you to the basic concepts behind socket programming and
how to use SocketWrench to get started developing your own Windows Sockets
applications. Although the echo client and server sample program is fairly basic, it
does examine many of the key issues that you'll encounter when developing your
own software.

Now is a good time to review the SocketWrench Technical Reference and the other
sample programs included in the package. The help file included with SocketWrench
also includes the complete technical reference, and can be accessed directly within
your development environment.

Advanced Development Using SocketTools

SocketWrench is part of a package developed by Catalyst called SocketTools. In
addition to the comprehensive, but fairly low-level, access that SocketWrench
provides, SocketTools includes components and libraries for many of the popular
Internet application protocols. There are six different editions of SocketTools
available, and all editions provide royalty-free redistribution licensing and a thirty
day money-back guarantee. Evaluation copies of all editions are available for
downloading from our website and we provide unlimited free technical support.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 27

SocketTools Visual Edition

The SocketTools Visual Edition consists of 16-bit Visual Basic (VBX) controls and both
16-bit and 32-bit ActiveX (OCX) controls for use with visual development
environments such as Visual Basic, Visual C++ and Delphi. A total of nineteen
controls provide client interfaces for the major application protocols such as the File
Transfer Protocol, Simple Mail Transfer Protocol, Domain Name Service and Telnet.
All versions of Visual Basic from 2.0 and later are supported, and the ActiveX
controls can be used with any 32-bit development tool that supports COM and the
ActiveX control specification. The network controls support both synchronous
(blocking) and asynchronous modes of operation and include trace debugging
facilities. All of the controls are thread-safe and can be used in multithreaded
containers, such as Internet Explorer.

SocketTools Secure Visual Edition

The SocketTools Secure Visual Edition consists of the same 32-bit ActiveX
components in the standard Visual Edition, including components which support
secure data communications over the Internet or a local network. The Secure Visual
Edition supports three standard security protocols: Secure Sockets Layer (SSL)
versions 2.0 and 3.0, Private Communication Technology (PCT) version 1.0 and
Transport Layer Security (TLS) version 1.0. The protocols supported are HTTPS,
FTPS, SMTPS, POP3S, NNTPS and TELNETS.

SocketTools Library Edition

The SocketTools Library Edition consists of 16-bit and 32-bit dynamic link libraries
(DLLs), and can be used by virtually any Windows programming language or
scripting tool. A total of nineteen libraries provide client interfaces for application
protocols such as the File Transfer Protocol, Simple Mail Transfer Protocol and Telnet
protocol. The application program interface for the Library Edition is implemented
with a simple elegance that makes it easy to use with any language, not just C or
C++. All of the libraries are thread-safe and can be used in multithreaded
applications.

SocketTools Secure Library Edition

The SocketTools Secure Library Edition consists of the same 32-bit dynamic link
libraries in the standard Library Edition, including libraries which support secure data
communications over the Internet or a local network. The Secure Library Edition
supports three standard security protocols: Secure Sockets Layer (SSL) versions 2.0
and 3.0, Private Communication Technology (PCT) version 1.0 and Transport Layer
Security (TLS) version 1.0. The protocols supported are HTTPS, FTPS, SMTPS,
POP3S, NNTPS and TELNETS.

SocketTools Enterprise Edition

The SocketTools Enterprise Edition offers the best of both worlds for the corporate
developer who needs visual controls for rapid application development, as well as the
power and flexibility of dynamic-link libraries for developing core application
systems. Including 16-bit Visual Basic controls, 16/32-bit ActiveX controls and
16/32-bit dynamic link libraries (DLLs), the Enterprise Edition is suitable for use with
virtually any Windows development environment.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

An Introduction to TCP/IP Programming 28

SocketTools Secure Enterprise Edition

The SocketTools Secure Enterprise Edition consists of the same 32-bit ActiveX
controls and dynamic link libraries in the standard Enterprise Edition, including
libraries and controls which support secure data communications over the Internet or
a local network. The Secure Library Edition supports three standard security
protocols: Secure Sockets Layer (SSL) versions 2.0 and 3.0, Private Communication
Technology (PCT) version 1.0 and Transport Layer Security (TLS) version 1.0. The
protocols supported are HTTPS, FTPS, SMTPS, POP3S, NNTPS and TELNETS.

For more information about SocketTools, visit the Catalyst website at
http://www.catalyst.com/products/sockettools/index.html.

Other Products from Catalyst

Catalyst is committed to providing the tools and component software that help
developers meet the increasingly complex needs of their customers.

ActivePatch

ActivePatch is a software development kit that enables developers to create their
own updates in the form of a patch, and integrate the patch application process
directly into their own software. Unlike other products, ActivePatch does not simply
create incremental updates and re-package the files. It analyzes each file at the byte
level, and determines the best method for updating the target file on the user's
system. It is designed to work on both text and binary files of any type, including
executables, libraries, data files and documents. ActivePatch can be used to create a
patch of a single file, or can be used to create an update for a complete product,
modifying existing files, removing files that are no longer needed and creating the
new files that have been added.

Catalyst File Transfer

The Catalyst File Transfer Control is an ActiveX control which enables developers to
easily integrate file transfer functionality within their applications. The control
implements the standard protocols for sending and receiving files over the Internet
and corporate intranets, and can be used in a wide variety of programming
languages which can use ActiveX components. The control itself is based on the core
networking and message handling code in our popular SocketTools toolkit, providing
all of the features and flexibility of those components packaged in an ActiveX control
with no external dependencies on third-party libraries. Included with the package is
a comprehensive on-line help file, technical reference and example programs.

Catalyst Internet Mail

Catalyst Internet Mail Control is an ActiveX control which provides Internet e-mail
services to applications, with the ability to compose, send and retrieve messages
from a mail server. All functionality is provided by the single control, so there is no
need to use multiple controls or write additional code to interface different
components. The Internet Mail control uses the standard protocols for sending and
retrieving messages and is desgined to work with a wide variety of servers. The
control itself is based on the core networking and message handling code in our
popular SocketTools toolkit, providing all of the features and flexibility of those
components packaged in an ActiveX control with no external dependencies on third-
party libraries. Included with the package is a comprehensive on-line help file,
technical reference and example programs.

Copyright © 1996-2003 Catalyst Development Corporation. All Rights Reserved.

http://www.catalyst.com/products/sockettools/index.html

